October  2019, 12(5): 1185-1196. doi: 10.3934/krm.2019045

Diffusion limit for a kinetic equation with a thermostatted interface

1. 

Dipartimento di Matematica, Università di Roma La Sapienza, Roma, Italy

2. 

IMPAN, Polish Academy of Sciences, Warsaw, Poland

3. 

CEREMADE, UMR CNRS, Université Paris-Dauphine, PSL Research University, 75016 Paris, France

* Corresponding author: Stefano Olla

Received  March 2019 Published  July 2019

Fund Project: T.K. acknowledges the support of the National Science Centre: NCN grant 2016/23/B/ST1/00492. SO's research is supported by ANR-15-CE40-0020-01 grant LSD. Both T.K. and S.O. were partially supported by the grant 346300 for IMPAN from the Simons Foundation and the matching 2015-2019 Polish MNiSW fund

We consider a linear phonon Boltzmann equation with a reflecting/transmitting/absorbing interface. This equation appears as the Boltzmann-Grad limit for the energy density function of a harmonic chain of oscillators with inter-particle stochastic scattering in the presence of a heat bath at temperature $ T $ in contact with one oscillator at the origin. We prove that under the diffusive scaling the solutions of the phonon equation tend to the solution $ \rho(t, y) $ of a heat equation with the boundary condition $ \rho(t, 0)\equiv T $.

Citation: Giada Basile, Tomasz Komorowski, Stefano Olla. Diffusion limit for a kinetic equation with a thermostatted interface. Kinetic & Related Models, 2019, 12 (5) : 1185-1196. doi: 10.3934/krm.2019045
References:
[1]

G. Bal and L. Ryzhik, Diffusion approximation of radiative transfer problems with interfaces, SIAM Journal on Applied Mathematics, 60 (2000), 1887-1912.  doi: 10.1137/S0036139999352080.  Google Scholar

[2]

C. BardosF. Golse and Y. Sone, Half-Space Problems for the Boltzmann Equation: A Survey, J. Stat. Phys., 124 (2006), 275-300.  doi: 10.1007/s10955-006-9077-z.  Google Scholar

[3]

C. BardosE. BernardF. Golse and R. Sentis, The diffusion approximation for the linear boltzmann equation with vanishing scattering coefficient, Communications in Math. Sciences, 13 (2015), 641-671.  doi: 10.4310/CMS.2015.v13.n3.a3.  Google Scholar

[4]

C. BardosR. Santos and R. Sentis, Diffusion approximation and computation of the critical size, J Trans. Amer. Math. Soc., 284 (1984), 617-649.  doi: 10.1090/S0002-9947-1984-0743736-0.  Google Scholar

[5]

G. Basile, From a kinetic equation to a diffusion under an anomalous scaling, Ann. Inst. H. Poincaré Probab. Statist., 50 (2014), 1301-1322.  doi: 10.1214/13-AIHP554.  Google Scholar

[6]

G. Basile and A. Bovier, Convergence of a kinetic equation to a fractional diffusion equation, Markov Process. Related Fields, 16 (2010), 15-44.   Google Scholar

[7]

G. BasileS. Olla and H. Spohn, Wigner functions and stochastically perturbed lattice dynamics, Archive for Rational Mechanics and Analysis, 195 (2009), 171-203.  doi: 10.1007/s00205-008-0205-6.  Google Scholar

[8]

N. Ben AbdallahA. Mellet and M. Puel, Fractional diffusion limit for collisional kinetic equations: a Hilbert expansion approach, Kinet. Relat. Models, 4 (2011), 873-900.  doi: 10.3934/krm.2011.4.873.  Google Scholar

[9]

A. BensoussanJ. L. Lions and G. Papanicolaou, Boundary Layers and Homogenization of transport processes, Publ. RIMS, Kyoto Univ., 15 (1979), 53-157.  doi: 10.2977/prims/1195188427.  Google Scholar

[10]

L. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, 6, Springer Verlag, Berlin, 1993. doi: 10.1007/978-3-642-58004-8.  Google Scholar

[11]

M. JaraT. Komorowski and S. Olla, Limit theorems for additive functionals of a Markov chain, Ann. of Appl. Prob., 19 (2009), 2270-2300.  doi: 10.1214/09-AAP610.  Google Scholar

[12]

T. Komorowski, S. Olla and L. Ryzhik, Fractional diffusion limit for a kinetic equation with an interface - probabilistic approach, in preparation. Google Scholar

[13]

T. Komorowski, S. Olla, L. Ryzhik and H. Spohn, High frequency limit for a chain of harmonic oscillators with a point Langevin thermostat, 2018, preprint arXiv: 1806.02089 Google Scholar

[14]

E. W. Larsen and J. B. Keller, Asymptotic solution of neutron transport problems for small mean free paths, J. Math. Phys., 15 (1974), 75-81.  doi: 10.1063/1.1666510.  Google Scholar

[15]

A. MelletS. Mischler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations, Archive for Rational Mechanics and Analysis, 199 (2011), 493-525.  doi: 10.1007/s00205-010-0354-2.  Google Scholar

show all references

References:
[1]

G. Bal and L. Ryzhik, Diffusion approximation of radiative transfer problems with interfaces, SIAM Journal on Applied Mathematics, 60 (2000), 1887-1912.  doi: 10.1137/S0036139999352080.  Google Scholar

[2]

C. BardosF. Golse and Y. Sone, Half-Space Problems for the Boltzmann Equation: A Survey, J. Stat. Phys., 124 (2006), 275-300.  doi: 10.1007/s10955-006-9077-z.  Google Scholar

[3]

C. BardosE. BernardF. Golse and R. Sentis, The diffusion approximation for the linear boltzmann equation with vanishing scattering coefficient, Communications in Math. Sciences, 13 (2015), 641-671.  doi: 10.4310/CMS.2015.v13.n3.a3.  Google Scholar

[4]

C. BardosR. Santos and R. Sentis, Diffusion approximation and computation of the critical size, J Trans. Amer. Math. Soc., 284 (1984), 617-649.  doi: 10.1090/S0002-9947-1984-0743736-0.  Google Scholar

[5]

G. Basile, From a kinetic equation to a diffusion under an anomalous scaling, Ann. Inst. H. Poincaré Probab. Statist., 50 (2014), 1301-1322.  doi: 10.1214/13-AIHP554.  Google Scholar

[6]

G. Basile and A. Bovier, Convergence of a kinetic equation to a fractional diffusion equation, Markov Process. Related Fields, 16 (2010), 15-44.   Google Scholar

[7]

G. BasileS. Olla and H. Spohn, Wigner functions and stochastically perturbed lattice dynamics, Archive for Rational Mechanics and Analysis, 195 (2009), 171-203.  doi: 10.1007/s00205-008-0205-6.  Google Scholar

[8]

N. Ben AbdallahA. Mellet and M. Puel, Fractional diffusion limit for collisional kinetic equations: a Hilbert expansion approach, Kinet. Relat. Models, 4 (2011), 873-900.  doi: 10.3934/krm.2011.4.873.  Google Scholar

[9]

A. BensoussanJ. L. Lions and G. Papanicolaou, Boundary Layers and Homogenization of transport processes, Publ. RIMS, Kyoto Univ., 15 (1979), 53-157.  doi: 10.2977/prims/1195188427.  Google Scholar

[10]

L. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, 6, Springer Verlag, Berlin, 1993. doi: 10.1007/978-3-642-58004-8.  Google Scholar

[11]

M. JaraT. Komorowski and S. Olla, Limit theorems for additive functionals of a Markov chain, Ann. of Appl. Prob., 19 (2009), 2270-2300.  doi: 10.1214/09-AAP610.  Google Scholar

[12]

T. Komorowski, S. Olla and L. Ryzhik, Fractional diffusion limit for a kinetic equation with an interface - probabilistic approach, in preparation. Google Scholar

[13]

T. Komorowski, S. Olla, L. Ryzhik and H. Spohn, High frequency limit for a chain of harmonic oscillators with a point Langevin thermostat, 2018, preprint arXiv: 1806.02089 Google Scholar

[14]

E. W. Larsen and J. B. Keller, Asymptotic solution of neutron transport problems for small mean free paths, J. Math. Phys., 15 (1974), 75-81.  doi: 10.1063/1.1666510.  Google Scholar

[15]

A. MelletS. Mischler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations, Archive for Rational Mechanics and Analysis, 199 (2011), 493-525.  doi: 10.1007/s00205-010-0354-2.  Google Scholar

[1]

E. C.M. Crooks, E. N. Dancer, Danielle Hilhorst. Fast reaction limit and long time behavior for a competition-diffusion system with Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 39-44. doi: 10.3934/dcdsb.2007.8.39

[2]

Antonio Suárez. A logistic equation with degenerate diffusion and Robin boundary conditions. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1255-1267. doi: 10.3934/cpaa.2008.7.1255

[3]

Narcisa Apreutesei, Vitaly Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Networks & Heterogeneous Media, 2013, 8 (1) : 23-35. doi: 10.3934/nhm.2013.8.23

[4]

Eugenio Montefusco, Benedetta Pellacci, Gianmaria Verzini. Fractional diffusion with Neumann boundary conditions: The logistic equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2175-2202. doi: 10.3934/dcdsb.2013.18.2175

[5]

József Z. Farkas, Peter Hinow. Physiologically structured populations with diffusion and dynamic boundary conditions. Mathematical Biosciences & Engineering, 2011, 8 (2) : 503-513. doi: 10.3934/mbe.2011.8.503

[6]

Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. Dynamic boundary conditions as limit of singularly perturbed parabolic problems. Conference Publications, 2011, 2011 (Special) : 737-746. doi: 10.3934/proc.2011.2011.737

[7]

Davide Guidetti. Parabolic problems with general Wentzell boundary conditions and diffusion on the boundary. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1401-1417. doi: 10.3934/cpaa.2016.15.1401

[8]

Shin-Ichiro Ei, Toshio Ishimoto. Effect of boundary conditions on the dynamics of a pulse solution for reaction-diffusion systems. Networks & Heterogeneous Media, 2013, 8 (1) : 191-209. doi: 10.3934/nhm.2013.8.191

[9]

Ciprian G. Gal, Mahamadi Warma. Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions. Evolution Equations & Control Theory, 2016, 5 (1) : 61-103. doi: 10.3934/eect.2016.5.61

[10]

Bhargav Kumar Kakumani, Suman Kumar Tumuluri. Asymptotic behavior of the solution of a diffusion equation with nonlocal boundary conditions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 407-419. doi: 10.3934/dcdsb.2017019

[11]

Mustapha Mokhtar-Kharroubi, Quentin Richard. Time asymptotics of structured populations with diffusion and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4087-4116. doi: 10.3934/dcdsb.2018127

[12]

Ciprian G. Gal, Maurizio Grasselli. Singular limit of viscous Cahn-Hilliard equations with memory and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1581-1610. doi: 10.3934/dcdsb.2013.18.1581

[13]

Hugo Beirão da Veiga. A challenging open problem: The inviscid limit under slip-type boundary conditions.. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 231-236. doi: 10.3934/dcdss.2010.3.231

[14]

Matthew Paddick. The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2673-2709. doi: 10.3934/dcds.2016.36.2673

[15]

Ciprian G. Gal, Mahamadi Warma. Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1279-1319. doi: 10.3934/dcds.2016.36.1279

[16]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116

[17]

Marc Briant. Instantaneous exponential lower bound for solutions to the Boltzmann equation with Maxwellian diffusion boundary conditions. Kinetic & Related Models, 2015, 8 (2) : 281-308. doi: 10.3934/krm.2015.8.281

[18]

Marek Fila, Hirokazu Ninomiya, Juan-Luis Vázquez. Dirichlet boundary conditions can prevent blow-up in reaction-diffusion equations and systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 63-74. doi: 10.3934/dcds.2006.14.63

[19]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure & Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017

[20]

Kunimochi Sakamoto. Destabilization threshold curves for diffusion systems with equal diffusivity under non-diagonal flux boundary conditions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 641-654. doi: 10.3934/dcdsb.2016.21.641

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (28)
  • HTML views (70)
  • Cited by (0)

Other articles
by authors

[Back to Top]