December  2019, 12(6): 1197-1228. doi: 10.3934/krm.2019046

Sonic-supersonic solutions for the two-dimensional pseudo-steady full Euler equations

1. 

Department of Mathematics, Hangzhou Normal University, Hangzhou, 310036, China

2. 

Department of Mathematics, University of Iowa, Iowa City, IA 52242, United States

* Corresponding author: Yanbo Hu

Received  June 2018 Revised  May 2019 Published  September 2019

Fund Project: The first author is supported by NSF of Zhejiang Province of China grant LY17A010019, NSFC grants 11301128, 11571088 and China Scholarship Council grant 201708330155

This paper is focused on the existence of classical sonic-supersonic solutions near sonic curves for the two-dimensional pseudo-steady full Euler equations in gas dynamics. By introducing a novel set of change variables and using the idea of characteristic decomposition, the Euler system is transformed into a new system which displays a transparent singularity-regularity structure. With a choice of weighted metric space, we establish the local existence of smooth solutions for the new system by the fixed-point method. Finally, we obtain a local classical solution for the pseudo-steady full Euler equations by converting the solution from the partial hodograph variables to the original variables.

Citation: Yanbo Hu, Tong Li. Sonic-supersonic solutions for the two-dimensional pseudo-steady full Euler equations. Kinetic & Related Models, 2019, 12 (6) : 1197-1228. doi: 10.3934/krm.2019046
References:
[1]

L. Bers, On the continuation of a potential gas flow across the sonic line, Tech. Notes Nat. Adv. Comm. Aeronaut., 1950 (1950), 58 pp.  Google Scholar

[2]

S. ČanićB. L. Keyfitz and E. H. Kim, A free boundary problem for a quasi-linear degenerate elliptic equation: Regular reflection of weak shocks, Comm. Pure Appl. Math., 55 (2002), 71-92.  doi: 10.1002/cpa.10013.  Google Scholar

[3]

T. ChangG. Q. Chen and S. L. Yang, On the 2-D Riemann problem for the compressible Euler equations. Ⅰ. Interaction of shocks and rarefaction waves, Discrete Contin. Dyn. Syst., 1 (1995), 555-584.  doi: 10.3934/dcds.1995.1.555.  Google Scholar

[4]

G.-Q. ChenC. M. DafermosM. Slemrod and D. H. Wang, On two-dimensional sonic-subsonic flow, Comm. Math. Phys., 271 (2007), 635-647.  doi: 10.1007/s00220-007-0211-9.  Google Scholar

[5]

G.-Q. Chen and M. Feldman, Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed type, J. Amer. Math. Soc., 16 (2003), 461-494.  doi: 10.1090/S0894-0347-03-00422-3.  Google Scholar

[6]

G.-Q. ChenF.-M. Huang and T.-Y. Wang, Subsonic-sonic limit of approximate solutions to multidimensional steady Euler equations, Arch. Ration. Mech. Anal., 219 (2016), 719-740.  doi: 10.1007/s00205-015-0905-7.  Google Scholar

[7]

G.-Q. ChenM. Slemrod and D. H. Wang, Vanishing viscosity method for transonic flow, Arch. Ration. Mech. Anal., 189 (2008), 159-188.  doi: 10.1007/s00205-007-0101-5.  Google Scholar

[8]

S. X. Chen, Transonic shocks in 3-D compressible flow passing a duct with a general section for Euler systems, Trans. Amer. Math. Soc., 360 (2008), 5265-5289.  doi: 10.1090/S0002-9947-08-04493-0.  Google Scholar

[9]

S. X. Chen, Compressible flow and transonic shock in a diverging nozzle, Comm. Math. Phys., 289 (2009), 75-106.  doi: 10.1007/s00220-009-0811-7.  Google Scholar

[10]

S. X. Chen, The fundamental solution of the Keldysh type operator, Sci. China Ser. A, 52 (2009), 1829-1843.  doi: 10.1007/s11425-009-0069-8.  Google Scholar

[11]

S. X. ChenZ. P. Xin and H. C. Yin, Global shock waves for the supersonic flow past a perturbed cone, Comm. Math. Phys., 228 (2002), 47-84.  doi: 10.1007/s002200200652.  Google Scholar

[12]

X. Chen and Y. X. Zheng, The direct approach to the interaction of rarefaction waves of the two-dimensional Euler equations, Indiana Univ. Math. J., 59 (2010), 231-256.  doi: 10.1512/iumj.2010.59.3752.  Google Scholar

[13]

L. P. Cook, Transonic Aerodynamics: Problems in Asymptotic Theory, Frontiers in Applied Mathematics, 12. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1993. doi: 10.1137/1.9781611970975.  Google Scholar

[14]

R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Interscience Publishers, Inc., New York, N. Y. 1948.  Google Scholar

[15]

Z. H. Dai and T. Zhang, Existence of a global smooth solution for a degenerate Goursat problem of gas dynamics, Arch. Ration. Mech. Anal., 155 (2000), 277-298.  doi: 10.1007/s002050000113.  Google Scholar

[16]

V. Elling and T.-P. Liu, Supersonic flow onto a solid wedge, Comm. Pure Appl. Math., 61 (2008), 1347-1448.  doi: 10.1002/cpa.20231.  Google Scholar

[17]

C. Ferrari and F. Tricomi, Transonic Aerodynamics, Academic Press, 1968. Google Scholar

[18]

K. G. Guderley, The Theory of Transonic Flow, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1962.  Google Scholar

[19]

Y. B. Hu and J. Q. Li, Sonic-supersonic solutions for the two-dimensional steady full Euler equations, submitted, 2017. Google Scholar

[20]

Y. B. HuJ. Q. Li and W. C. Sheng, Degenerate Goursat-type boundary value problems arising from the study of two-dimensional isothermal Euler equations, Z. Angew. Math. Phys., 63 (2012), 1021-1046.  doi: 10.1007/s00033-012-0203-2.  Google Scholar

[21]

Y. B. Hu and T. Li, The regularity of a degenerate Goursat problem for the 2-D isothermal Euler equations, Comm. Pure Appl. Anal., 18 (2019), 3317-3336.  doi: 10.3934/cpaa.2019149.  Google Scholar

[22]

Y. B. Hu and G. D. Wang, Semi-hyperbolic patches of solutions to the two-dimensional nonlinear wave system for Chaplygin gases, J. Differential Equations, 257 (2014), 1567-1590.  doi: 10.1016/j.jde.2014.05.020.  Google Scholar

[23]

A. G. Kuz'min, Boundary Value Problems for Transonic Flow, John Wiley and Sons, 2002. Google Scholar

[24]

G. Lai and W. C. Sheng, Centered wave bubbles with sonic boundary of pseudosteady Guderley Mach reflection configurations in gas dynamics, J. Math. Pure Appl., 104 (2015), 179-206.  doi: 10.1016/j.matpur.2015.02.005.  Google Scholar

[25]

P. D. Lax and X.-D. Liu, Solution of two-dimensional Riemann problems of gas dynamics by positive schemes, SIAM J. Sci. Comput., 19 (1998), 319-340.  doi: 10.1137/S1064827595291819.  Google Scholar

[26]

J. Q. Li, T. Zhang and S. L. Yang, The Two-Dimensional Riemann Problem in Gas Dynamics, Pitman Monographs and Surveys in Pure and Applied Mathematics, 98. Longman, Harlow, 1998.  Google Scholar

[27]

J. Q. LiT. Zhang and Y. X. Zheng, Simple waves and a characteristic decomposition of the two dimensional compressible Euler equations, Comm. Math. Phys., 267 (2006), 1-12.  doi: 10.1007/s00220-006-0033-1.  Google Scholar

[28]

J. Q. Li and Y. X. Zheng, Interaction of rarefaction waves of the two-dimensional self-similar Euler equations, Arch. Rat. Mech. Anal., 193 (2009), 623-657.  doi: 10.1007/s00205-008-0140-6.  Google Scholar

[29]

J. Q. Li and Y. X. Zheng, Interaction of four rarefaction waves in the bi-symmetric class of the two-dimensional Euler equations, Comm. Math. Phys., 296 (2010), 303-321.  doi: 10.1007/s00220-010-1019-6.  Google Scholar

[30]

M. J. Li and Y. X. Zheng, Semi-hyperbolic patches of solutions of the two-dimensional Euler equations, Arch. Rational Mech. Anal., 201 (2011), 1069-1096.  doi: 10.1007/s00205-011-0410-6.  Google Scholar

[31]

C. S. Morawetz, On the non-existence of continuous transonic flow past profiles. Ⅱ, Comm. Pure Appl. Math., 10 (1957), 107-131.  doi: 10.1002/cpa.3160100105.  Google Scholar

[32]

C. S. Morawetz, On a weak solution for a transonic flow problem, Comm. Pure Appl. Math., 38 (1985), 797-817.  doi: 10.1002/cpa.3160380610.  Google Scholar

[33] O. A. Oleinik and E. V. Radkevič, Second Order Equations with Nonnegative Characteristic Form, Plenum Press, New York-London, 1973.   Google Scholar
[34]

C. W. Schulz-RinneJ. P. Collins and H. M. Glaz, Numerical solution of the Riemann problem for two-dimensional gsa dynamics, SIAM J. Sci. Compt., 14 (1993), 1394-1414.  doi: 10.1137/0914082.  Google Scholar

[35]

W. C. Sheng and S. K. You, Interaction of a centered simple wave and a planar rarefaction wave of the two-dimensional Euler equations for pseudo-steady compressible flow, J. Math. Pures Appl., 114 (2018), 29-50.  doi: 10.1016/j.matpur.2017.07.019.  Google Scholar

[36]

M. M. Smirnov, Equations of Mixed Type, Translations of Mathematical Monographs, 51. Amer. Math. Soc., Providence, R.I., 1978, 232 pp.  Google Scholar

[37]

K. SongQ. Wang and Y. X. Zheng, The regularity of semihyperbolic patches near sonic lines for the 2-D Euler system in gas dynamics, SIAM J. Math. Anal., 47 (2015), 2200-2219.  doi: 10.1137/140964382.  Google Scholar

[38]

K. Song and Y. X. Zheng, Semi-hyperbolic patches of solutions of the pressure gradient system, Discrete Contin. Dyn. Syst., 24 (2009), 1365-1380.  doi: 10.3934/dcds.2009.24.1365.  Google Scholar

[39]

C. P. Wang and Z. P. Xin, On a degenerate free boundary problem and continuous subsonic-sonic flows in a convergent nozzle, Arch. Ration. Mech. Anal., 208 (2013), 911-975.  doi: 10.1007/s00205-012-0607-3.  Google Scholar

[40]

C. P. Wang and Z. P. Xin, Global smooth supersonic flows in infinite expanding nozzles, SIAM J. Math. Anal., 47 (2015), 3151-3211.  doi: 10.1137/140994289.  Google Scholar

[41]

C. P. Wang and Z. P. Xin, Smooth transonic flows of Meyer type in de Laval nozzles, Arch. Ration. Mech. Anal., 232 (2019), 1597-1647.  doi: 10.1007/s00205-018-01350-9.  Google Scholar

[42]

Q. Wang and Y. X. Zheng, The regularity of semi-hyperbolic patches at sonic lines for the pressure gradient equation in gas dynamics, Indiana Univ. Math. J., 63 (2014), 385-402.  doi: 10.1512/iumj.2014.63.5244.  Google Scholar

[43]

C. J. Xie and Z. P. Xin, Global subsonic and subsonic-sonic flows through infinitely long nozzles, Indiana Univ. Math. J., 56 (2007), 2991-3023.  doi: 10.1512/iumj.2007.56.3108.  Google Scholar

[44]

C. J. Xie and Z. P. Xin, Existence of global steady subsonic Euler flows through infinitely long nozzles, SIAM J. Math. Anal., 42 (2010), 751-784.  doi: 10.1137/09076667X.  Google Scholar

[45]

Z. P. Xin and H. C. Yin, Transonic shock in a nozzle Ⅰ: Two-dimensional case, Comm. Pure Appl. Math., 58 (2005), 999-1050.  doi: 10.1002/cpa.20025.  Google Scholar

[46]

T. Zhang and Y. X. Zheng, Conjecture on the structure of solution of the Riemann problem for two-dimensional gas dynamics systems, SIAM J. Math. Anal., 21 (1990), 593-630.  doi: 10.1137/0521032.  Google Scholar

[47]

T. Y. Zhang and Y. X. Zheng, Sonic-supersonic solutions for the steady Euler equations, Indiana Univ. Math. J., 63 (2014), 1785-1817.  doi: 10.1512/iumj.2014.63.5434.  Google Scholar

[48]

T. Y. Zhang and Y. X. Zheng, Existence of classical sonic-supersonic solutions for the pseudo steady Euler equations (in Chinese), Scientia Sinica Mathematica, 47 (2017), 1-18.   Google Scholar

[49]

Y. X. Zheng, Systems of Conservation Laws: Two-Dimensional Riemann Problems, Progress in Nonlinear Differential Equations and their Applications, 38. Birkhäuser Boston, Inc., Boston, MA, 2001. doi: 10.1007/978-1-4612-0141-0.  Google Scholar

show all references

References:
[1]

L. Bers, On the continuation of a potential gas flow across the sonic line, Tech. Notes Nat. Adv. Comm. Aeronaut., 1950 (1950), 58 pp.  Google Scholar

[2]

S. ČanićB. L. Keyfitz and E. H. Kim, A free boundary problem for a quasi-linear degenerate elliptic equation: Regular reflection of weak shocks, Comm. Pure Appl. Math., 55 (2002), 71-92.  doi: 10.1002/cpa.10013.  Google Scholar

[3]

T. ChangG. Q. Chen and S. L. Yang, On the 2-D Riemann problem for the compressible Euler equations. Ⅰ. Interaction of shocks and rarefaction waves, Discrete Contin. Dyn. Syst., 1 (1995), 555-584.  doi: 10.3934/dcds.1995.1.555.  Google Scholar

[4]

G.-Q. ChenC. M. DafermosM. Slemrod and D. H. Wang, On two-dimensional sonic-subsonic flow, Comm. Math. Phys., 271 (2007), 635-647.  doi: 10.1007/s00220-007-0211-9.  Google Scholar

[5]

G.-Q. Chen and M. Feldman, Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed type, J. Amer. Math. Soc., 16 (2003), 461-494.  doi: 10.1090/S0894-0347-03-00422-3.  Google Scholar

[6]

G.-Q. ChenF.-M. Huang and T.-Y. Wang, Subsonic-sonic limit of approximate solutions to multidimensional steady Euler equations, Arch. Ration. Mech. Anal., 219 (2016), 719-740.  doi: 10.1007/s00205-015-0905-7.  Google Scholar

[7]

G.-Q. ChenM. Slemrod and D. H. Wang, Vanishing viscosity method for transonic flow, Arch. Ration. Mech. Anal., 189 (2008), 159-188.  doi: 10.1007/s00205-007-0101-5.  Google Scholar

[8]

S. X. Chen, Transonic shocks in 3-D compressible flow passing a duct with a general section for Euler systems, Trans. Amer. Math. Soc., 360 (2008), 5265-5289.  doi: 10.1090/S0002-9947-08-04493-0.  Google Scholar

[9]

S. X. Chen, Compressible flow and transonic shock in a diverging nozzle, Comm. Math. Phys., 289 (2009), 75-106.  doi: 10.1007/s00220-009-0811-7.  Google Scholar

[10]

S. X. Chen, The fundamental solution of the Keldysh type operator, Sci. China Ser. A, 52 (2009), 1829-1843.  doi: 10.1007/s11425-009-0069-8.  Google Scholar

[11]

S. X. ChenZ. P. Xin and H. C. Yin, Global shock waves for the supersonic flow past a perturbed cone, Comm. Math. Phys., 228 (2002), 47-84.  doi: 10.1007/s002200200652.  Google Scholar

[12]

X. Chen and Y. X. Zheng, The direct approach to the interaction of rarefaction waves of the two-dimensional Euler equations, Indiana Univ. Math. J., 59 (2010), 231-256.  doi: 10.1512/iumj.2010.59.3752.  Google Scholar

[13]

L. P. Cook, Transonic Aerodynamics: Problems in Asymptotic Theory, Frontiers in Applied Mathematics, 12. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1993. doi: 10.1137/1.9781611970975.  Google Scholar

[14]

R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Interscience Publishers, Inc., New York, N. Y. 1948.  Google Scholar

[15]

Z. H. Dai and T. Zhang, Existence of a global smooth solution for a degenerate Goursat problem of gas dynamics, Arch. Ration. Mech. Anal., 155 (2000), 277-298.  doi: 10.1007/s002050000113.  Google Scholar

[16]

V. Elling and T.-P. Liu, Supersonic flow onto a solid wedge, Comm. Pure Appl. Math., 61 (2008), 1347-1448.  doi: 10.1002/cpa.20231.  Google Scholar

[17]

C. Ferrari and F. Tricomi, Transonic Aerodynamics, Academic Press, 1968. Google Scholar

[18]

K. G. Guderley, The Theory of Transonic Flow, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1962.  Google Scholar

[19]

Y. B. Hu and J. Q. Li, Sonic-supersonic solutions for the two-dimensional steady full Euler equations, submitted, 2017. Google Scholar

[20]

Y. B. HuJ. Q. Li and W. C. Sheng, Degenerate Goursat-type boundary value problems arising from the study of two-dimensional isothermal Euler equations, Z. Angew. Math. Phys., 63 (2012), 1021-1046.  doi: 10.1007/s00033-012-0203-2.  Google Scholar

[21]

Y. B. Hu and T. Li, The regularity of a degenerate Goursat problem for the 2-D isothermal Euler equations, Comm. Pure Appl. Anal., 18 (2019), 3317-3336.  doi: 10.3934/cpaa.2019149.  Google Scholar

[22]

Y. B. Hu and G. D. Wang, Semi-hyperbolic patches of solutions to the two-dimensional nonlinear wave system for Chaplygin gases, J. Differential Equations, 257 (2014), 1567-1590.  doi: 10.1016/j.jde.2014.05.020.  Google Scholar

[23]

A. G. Kuz'min, Boundary Value Problems for Transonic Flow, John Wiley and Sons, 2002. Google Scholar

[24]

G. Lai and W. C. Sheng, Centered wave bubbles with sonic boundary of pseudosteady Guderley Mach reflection configurations in gas dynamics, J. Math. Pure Appl., 104 (2015), 179-206.  doi: 10.1016/j.matpur.2015.02.005.  Google Scholar

[25]

P. D. Lax and X.-D. Liu, Solution of two-dimensional Riemann problems of gas dynamics by positive schemes, SIAM J. Sci. Comput., 19 (1998), 319-340.  doi: 10.1137/S1064827595291819.  Google Scholar

[26]

J. Q. Li, T. Zhang and S. L. Yang, The Two-Dimensional Riemann Problem in Gas Dynamics, Pitman Monographs and Surveys in Pure and Applied Mathematics, 98. Longman, Harlow, 1998.  Google Scholar

[27]

J. Q. LiT. Zhang and Y. X. Zheng, Simple waves and a characteristic decomposition of the two dimensional compressible Euler equations, Comm. Math. Phys., 267 (2006), 1-12.  doi: 10.1007/s00220-006-0033-1.  Google Scholar

[28]

J. Q. Li and Y. X. Zheng, Interaction of rarefaction waves of the two-dimensional self-similar Euler equations, Arch. Rat. Mech. Anal., 193 (2009), 623-657.  doi: 10.1007/s00205-008-0140-6.  Google Scholar

[29]

J. Q. Li and Y. X. Zheng, Interaction of four rarefaction waves in the bi-symmetric class of the two-dimensional Euler equations, Comm. Math. Phys., 296 (2010), 303-321.  doi: 10.1007/s00220-010-1019-6.  Google Scholar

[30]

M. J. Li and Y. X. Zheng, Semi-hyperbolic patches of solutions of the two-dimensional Euler equations, Arch. Rational Mech. Anal., 201 (2011), 1069-1096.  doi: 10.1007/s00205-011-0410-6.  Google Scholar

[31]

C. S. Morawetz, On the non-existence of continuous transonic flow past profiles. Ⅱ, Comm. Pure Appl. Math., 10 (1957), 107-131.  doi: 10.1002/cpa.3160100105.  Google Scholar

[32]

C. S. Morawetz, On a weak solution for a transonic flow problem, Comm. Pure Appl. Math., 38 (1985), 797-817.  doi: 10.1002/cpa.3160380610.  Google Scholar

[33] O. A. Oleinik and E. V. Radkevič, Second Order Equations with Nonnegative Characteristic Form, Plenum Press, New York-London, 1973.   Google Scholar
[34]

C. W. Schulz-RinneJ. P. Collins and H. M. Glaz, Numerical solution of the Riemann problem for two-dimensional gsa dynamics, SIAM J. Sci. Compt., 14 (1993), 1394-1414.  doi: 10.1137/0914082.  Google Scholar

[35]

W. C. Sheng and S. K. You, Interaction of a centered simple wave and a planar rarefaction wave of the two-dimensional Euler equations for pseudo-steady compressible flow, J. Math. Pures Appl., 114 (2018), 29-50.  doi: 10.1016/j.matpur.2017.07.019.  Google Scholar

[36]

M. M. Smirnov, Equations of Mixed Type, Translations of Mathematical Monographs, 51. Amer. Math. Soc., Providence, R.I., 1978, 232 pp.  Google Scholar

[37]

K. SongQ. Wang and Y. X. Zheng, The regularity of semihyperbolic patches near sonic lines for the 2-D Euler system in gas dynamics, SIAM J. Math. Anal., 47 (2015), 2200-2219.  doi: 10.1137/140964382.  Google Scholar

[38]

K. Song and Y. X. Zheng, Semi-hyperbolic patches of solutions of the pressure gradient system, Discrete Contin. Dyn. Syst., 24 (2009), 1365-1380.  doi: 10.3934/dcds.2009.24.1365.  Google Scholar

[39]

C. P. Wang and Z. P. Xin, On a degenerate free boundary problem and continuous subsonic-sonic flows in a convergent nozzle, Arch. Ration. Mech. Anal., 208 (2013), 911-975.  doi: 10.1007/s00205-012-0607-3.  Google Scholar

[40]

C. P. Wang and Z. P. Xin, Global smooth supersonic flows in infinite expanding nozzles, SIAM J. Math. Anal., 47 (2015), 3151-3211.  doi: 10.1137/140994289.  Google Scholar

[41]

C. P. Wang and Z. P. Xin, Smooth transonic flows of Meyer type in de Laval nozzles, Arch. Ration. Mech. Anal., 232 (2019), 1597-1647.  doi: 10.1007/s00205-018-01350-9.  Google Scholar

[42]

Q. Wang and Y. X. Zheng, The regularity of semi-hyperbolic patches at sonic lines for the pressure gradient equation in gas dynamics, Indiana Univ. Math. J., 63 (2014), 385-402.  doi: 10.1512/iumj.2014.63.5244.  Google Scholar

[43]

C. J. Xie and Z. P. Xin, Global subsonic and subsonic-sonic flows through infinitely long nozzles, Indiana Univ. Math. J., 56 (2007), 2991-3023.  doi: 10.1512/iumj.2007.56.3108.  Google Scholar

[44]

C. J. Xie and Z. P. Xin, Existence of global steady subsonic Euler flows through infinitely long nozzles, SIAM J. Math. Anal., 42 (2010), 751-784.  doi: 10.1137/09076667X.  Google Scholar

[45]

Z. P. Xin and H. C. Yin, Transonic shock in a nozzle Ⅰ: Two-dimensional case, Comm. Pure Appl. Math., 58 (2005), 999-1050.  doi: 10.1002/cpa.20025.  Google Scholar

[46]

T. Zhang and Y. X. Zheng, Conjecture on the structure of solution of the Riemann problem for two-dimensional gas dynamics systems, SIAM J. Math. Anal., 21 (1990), 593-630.  doi: 10.1137/0521032.  Google Scholar

[47]

T. Y. Zhang and Y. X. Zheng, Sonic-supersonic solutions for the steady Euler equations, Indiana Univ. Math. J., 63 (2014), 1785-1817.  doi: 10.1512/iumj.2014.63.5434.  Google Scholar

[48]

T. Y. Zhang and Y. X. Zheng, Existence of classical sonic-supersonic solutions for the pseudo steady Euler equations (in Chinese), Scientia Sinica Mathematica, 47 (2017), 1-18.   Google Scholar

[49]

Y. X. Zheng, Systems of Conservation Laws: Two-Dimensional Riemann Problems, Progress in Nonlinear Differential Equations and their Applications, 38. Birkhäuser Boston, Inc., Boston, MA, 2001. doi: 10.1007/978-1-4612-0141-0.  Google Scholar

[1]

Yuxi Zheng. Absorption of characteristics by sonic curve of the two-dimensional Euler equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 605-616. doi: 10.3934/dcds.2009.23.605

[2]

Andrew Raich. Heat equations and the Weighted $\bar\partial$-problem. Communications on Pure & Applied Analysis, 2012, 11 (3) : 885-909. doi: 10.3934/cpaa.2012.11.885

[3]

Gui-Qiang Chen, Jun Chen, Mikhail Feldman. Transonic flows with shocks past curved wedges for the full Euler equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4179-4211. doi: 10.3934/dcds.2016.36.4179

[4]

Ming Mei, Yong Wang. Stability of stationary waves for full Euler-Poisson system in multi-dimensional space. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1775-1807. doi: 10.3934/cpaa.2012.11.1775

[5]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[6]

Onur Alp İlhan. Solvability of some partial integral equations in Hilbert space. Communications on Pure & Applied Analysis, 2008, 7 (4) : 837-844. doi: 10.3934/cpaa.2008.7.837

[7]

Kyeong-Hun Kim, Kijung Lee. A weighted $L_p$-theory for second-order parabolic and elliptic partial differential systems on a half space. Communications on Pure & Applied Analysis, 2016, 15 (3) : 761-794. doi: 10.3934/cpaa.2016.15.761

[8]

Gui-Qiang G. Chen, Hairong Yuan. Local uniqueness of steady spherical transonic shock-fronts for the three--dimensional full Euler equations. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2515-2542. doi: 10.3934/cpaa.2013.12.2515

[9]

Guanghui Hu, Yavar Kian. Determination of singular time-dependent coefficients for wave equations from full and partial data. Inverse Problems & Imaging, 2018, 12 (3) : 745-772. doi: 10.3934/ipi.2018032

[10]

Minoo Kamrani. Numerical solution of partial differential equations with stochastic Neumann boundary conditions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5337-5354. doi: 10.3934/dcdsb.2019061

[11]

Igor Kukavica, Vlad C. Vicol. The domain of analyticity of solutions to the three-dimensional Euler equations in a half space. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 285-303. doi: 10.3934/dcds.2011.29.285

[12]

Heiko Enderling, Alexander R.A. Anderson, Mark A.J. Chaplain, Glenn W.A. Rowe. Visualisation of the numerical solution of partial differential equation systems in three space dimensions and its importance for mathematical models in biology. Mathematical Biosciences & Engineering, 2006, 3 (4) : 571-582. doi: 10.3934/mbe.2006.3.571

[13]

Ansgar Jüngel, Josipa-Pina Milišić. Full compressible Navier-Stokes equations for quantum fluids: Derivation and numerical solution. Kinetic & Related Models, 2011, 4 (3) : 785-807. doi: 10.3934/krm.2011.4.785

[14]

Linglong Du. Characteristic half space problem for the Broadwell model. Networks & Heterogeneous Media, 2014, 9 (1) : 97-110. doi: 10.3934/nhm.2014.9.97

[15]

Hyukjin Kwean. Kwak transformation and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 433-446. doi: 10.3934/cpaa.2004.3.433

[16]

Laiqing Meng, Jia Yuan, Xiaoxin Zheng. Global existence of almost energy solution to the two-dimensional chemotaxis-Navier-Stokes equations with partial diffusion. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3413-3441. doi: 10.3934/dcds.2019141

[17]

Carolyn Mayer, Kathryn Haymaker, Christine A. Kelley. Channel decomposition for multilevel codes over multilevel and partial erasure channels. Advances in Mathematics of Communications, 2018, 12 (1) : 151-168. doi: 10.3934/amc.2018010

[18]

Rinaldo M. Colombo, Graziano Guerra. Differential equations in metric spaces with applications. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 733-753. doi: 10.3934/dcds.2009.23.733

[19]

Norisuke Ioku. Some space-time integrability estimates of the solution for heat equations in two dimensions. Conference Publications, 2011, 2011 (Special) : 707-716. doi: 10.3934/proc.2011.2011.707

[20]

Xi-Hong Yan. A new convergence proof of augmented Lagrangian-based method with full Jacobian decomposition for structured variational inequalities. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 45-54. doi: 10.3934/naco.2016.6.45

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (46)
  • HTML views (92)
  • Cited by (0)

Other articles
by authors

[Back to Top]