[1]
|
A. Aftalion, Vortices in Bose-Einstein Condensates, Progress in Nonlinear Differential Equations and their Applications, 67. Birkhäuser Boston, Inc., Boston, MA, 2006.
|
[2]
|
P. L. Christiansen, M. P. Sorensen and A. C. Scott, Nonlinear Science at the Dawn of the 21st Century, Lecture Notes in Physics, 542. Springer-Verlag, Berlin, 2000.
doi: 10.1007/3-540-46629-0.
|
[3]
|
G. D. Akrivis, V. A. Dougalis and O. A. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation, Numer. Math., 59 (1991), 31-53.
doi: 10.1007/BF01385769.
|
[4]
|
T. Aktosun, T. Busse, F. Demontis and C. van der Mee, Exact solutions to the nonlinear Schrödinger equation, in Topics in Operator Theory, Systems and Mathematical Physics, Oper. Theory Adv. Appl., Birkhäuser Verlag, Basel, 2 (2010), 1–12.
doi: 10.1007/978-3-0346-0161-0_1.
|
[5]
|
R. Altmann, P. Henning and D. Peterseim, Quantitative Anderson localization of Schrödinger eigenstates under disorder potentials, submitted, 2018, arXiv: 1803.09950.
|
[6]
|
P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev., 109 (1958), 1492–1505, URL https://link.aps.org/doi/10.1103/PhysRev.109.1492.
doi: 10.1142/9789812567154_0007.
|
[7]
|
X. Antoine, W. Z. Bao and C. Besse, Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations, Comput. Phys. Commun., 184 (2013), 2621-2633.
doi: 10.1016/j.cpc.2013.07.012.
|
[8]
|
D. N. Arnold, G. David, D. Jerison, S. Mayboroda and M. Filoche, Effective confining potential of quantum states in disordered media, Phys. Rev. Lett., 116 (2016), 056602.
doi: 10.1103/PhysRevLett.116.056602.
|
[9]
|
W. Z. Bao and Y. Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Models, 6 (2013), 1-135.
doi: 10.3934/krm.2013.6.1.
|
[10]
|
W. Z. Bao and Q. Du, Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow, SIAM J. Sci. Comput., 25 (2004), 1674-1697.
doi: 10.1137/S1064827503422956.
|
[11]
|
W. Z. Bao, S. Jin and P. A. Markowich, Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes, SIAM J. Sci. Comput., 25 (2003), 27-64.
doi: 10.1137/S1064827501393253.
|
[12]
|
C. Besse, A relaxation scheme for the nonlinear Schrödinger equation, SIAM J. Numer. Anal., 42 (2004), 934-952.
doi: 10.1137/S0036142901396521.
|
[13]
|
C. Besse, S. Descombes, G. Dujardin and I. Lacroix-Violet, Energy Preserving Methods for Nonlinear Schrödinger Equations, 2018, arXiv: 1812.04890.
|
[14]
|
T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/cln/010.
|
[15]
|
Q. S. Chang, E. Jia and W. Sun, Difference schemes for solving the generalized nonlinear Schrödinger equation, J. Comput. Phys., 148 (1999), 397-415.
doi: 10.1006/jcph.1998.6120.
|
[16]
|
D. Clément, A. F. Varón, J. A. Retter, L. Sanchez-Palencia, A Aspect and P. Bouyer, Experimental study of the transport of coherent interacting matter-waves in a 1d random potential induced by laser speckle, New Journal of Physics, 8 (2006), 165, URL http://stacks.iop.org/1367-2630/8/i=8/a=165.
|
[17]
|
L. Erdös, B. Schlein and H.-T. Yau, Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate, Ann. of Math., 172 (2010), 291-370.
doi: 10.4007/annals.2010.172.291.
|
[18]
|
D. L. Feder, A. A. Svidzinsky, A. L. Fetter and C. W. Clark, Anomalous modes drive vortex dynamics in confined Bose-Einstein condensates, Phys. Rev. Lett., 86 (2001), 564-567.
doi: 10.1103/PhysRevLett.86.564.
|
[19]
|
M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch and I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature, 415 (2002), 39–44, URL http://dx.doi.org/10.1038/415039a.
|
[20]
|
D. F. Griffiths, A. R. Mitchell and J. L. Morris, A numerical study of the nonlinear Schrödinger equation, Comput. Methods Appl. Mech. Engrg., 45 (1984), 177-215.
doi: 10.1016/0045-7825(84)90156-7.
|
[21]
|
H. Hasimoto and H. Ono, Nonlinear modulation of gravity waves, Journal of the Physical Society of Japan, 33 (1972), 805-811.
doi: 10.1143/JPSJ.33.805.
|
[22]
|
P. Henning and A. Målqvist, The finite element method for the time-dependent Gross-Pitaevskii equation with angular momentum rotation, SIAM J. Numer. Anal., 55 (2017), 923-952.
doi: 10.1137/15M1009172.
|
[23]
|
P. Henning and D. Peterseim, Crank-Nicolson Galerkin approximations to nonlinear Schrödinger equations with rough potentials, Math. Models Methods Appl. Sci., 27 (2017), 2147-2184.
doi: 10.1142/S0218202517500415.
|
[24]
|
E. Jarlebring, S. Kvaal and W. Michiels, An inverse iteration method for eigenvalue problems with eigenvector nonlinearities, SIAM J. Sci. Comput., 36 (2014), A1978-A2001.
doi: 10.1137/130910014.
|
[25]
|
O. Karakashian and C. Makridakis, A space-time finite element method for the nonlinear Schrödinger equation: The continuous Galerkin method, SIAM J. Numer. Anal., 36 (1999), 1779-1807.
doi: 10.1137/S0036142997330111.
|
[26]
|
C. A. Mülle and D. Delande, Disorder and interference: Localization phenomena, arXiv e-prints.
|
[27]
|
J. M. Sanz-Serna, Methods for the numerical solution of the nonlinear Schrödinger equation, Math. Comp., 43 (1984), 21–27, URL http://dx.doi.org/10.2307/2007397.
doi: 10.1090/S0025-5718-1984-0744922-X.
|
[28]
|
J. M. Sanz-Serna, Runge-Kutta schemes for Hamiltonian systems, BIT, 28 (1988), 877-883.
doi: 10.1007/BF01954907.
|
[29]
|
J. M. Sanz-Serna and J. G. Verwer, Conservative and nonconservative schemes for the solution of the nonlinear Schrödinger equation, IMA J. Numer. Anal., 6 (1986), 25-42.
doi: 10.1093/imanum/6.1.25.
|
[30]
|
Y. Tourigny, Optimal H1 estimates for two time-discrete Galerkin approximations of a nonlinear Schrödinger equation, IMA J. Numer. Anal., 11 (1991), 509-523.
doi: 10.1093/imanum/11.4.509.
|
[31]
|
J. G. Verwer and J. M. Sanz-Serna, Convergence of method of lines approximations to partial differential equations, Computing, 33 (1984), 297-313.
doi: 10.1007/BF02242274.
|
[32]
|
J. Wang, A new error analysis of Crank-Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation, J. Sci. Comput., 60 (2014), 390-407.
doi: 10.1007/s10915-013-9799-4.
|
[33]
|
H. C. Yuen and B. M. Lake, Instabilities of waves on deep water, Annual Review of Fluid Mechanics, 12 (1980), 303-334.
doi: 10.1146/annurev.fl.12.010180.001511.
|
[34]
|
V. E. Zakharov, Stability of periodic waves of finite amplitude on a surface of deep fluid, Journal of Applied Mechanics and Technical Physics, 9 (1968), 190-194.
doi: 10.1007/BF00913182.
|
[35]
|
V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Ž. Éksper. Teoret. Fiz., 61 (1971), 118-134.
|
[36]
|
G. Zhong and J. E. Marsden, Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators, Physics Letters A, 133 (1988), 134-139.
doi: 10.1016/0375-9601(88)90773-6.
|
[37]
|
G. E. Zouraris, On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation, M2AN Math. Model. Numer. Anal., 35 (2001), 389-405.
doi: 10.1051/m2an:2001121.
|
[38]
|
G. E. Zouraris, Error Estimation of the Besse Relaxation Scheme for a Semilinear Heat Equation, 2018, arXiv: 1812.09273.
|