# American Institute of Mathematical Sciences

December  2019, 12(6): 1273-1296. doi: 10.3934/krm.2019049

## A kinetic theory approach to model pedestrian dynamics in bounded domains with obstacles

 Department of Mathematics, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, USA

Received  January 2019 Revised  May 2019 Published  September 2019

Fund Project: This work was partially supported by NSF grant DMS-1620384.

We consider a kinetic theory approach to model the evacuation of a crowd from bounded domains. The interactions of a person with other pedestrians and the environment, which includes walls, exits, and obstacles, are modeled by using tools of game theory and are transferred to the crowd dynamics. The model allows to weight between two competing behaviors: the search for less congested areas and the tendency to follow the stream unconsciously in a panic situation. For the numerical approximation of the solution to our model, we apply an operator splitting scheme which breaks the problem into two pure advection problems and a problem involving the interactions. We compare our numerical results against the data reported in a recent empirical study on evacuation from a room with two exits. For medium and medium-to-large groups of people we achieve good agreement between the computed average people density and flow rate and the respective measured quantities. Through a series of numerical tests we also show that our approach is capable of handling evacuation from a room with one or more exits with variable size, with and without obstacles, and can reproduce lane formation in bidirectional flow in a corridor.

Citation: Daewa Kim, Annalisa Quaini. A kinetic theory approach to model pedestrian dynamics in bounded domains with obstacles. Kinetic and Related Models, 2019, 12 (6) : 1273-1296. doi: 10.3934/krm.2019049
##### References:
 [1] J. P. Agnelli, F. Colasuonno and D. Knopoff, A kinetic theory approach to the dynamics of crowd evacuation from bounded domains, Mathematical Models and Methods in Applied Sciences, 25 (2015), 109-129.  doi: 10.1142/S0218202515500049. [2] G. Antonini, M. Bierlaire and M. Weber, Discrete choice models of pedestrian walking behavior, Transportation Research Part B: Methodological, 40 (2006), 667-687.  doi: 10.1016/j.trb.2005.09.006. [3] M. Asano, T. Iryo and M. Kuwahara, Microscopic pedestrian simulation model combined with a tactical model for route choice behaviour, Transportation Research Part C: Emerging Technologies, 18 (2010), 842-855.  doi: 10.1016/j.trc.2010.01.005. [4] S. Bandini, S. Manzoni and G. Vizzari, Agent based modeling and simulation: An informatics perspective, Journal of Artificial Societies and Social Simulation, 12 (2009). [5] N. Bellomo and A. Bellouquid, On the modeling of crowd dynamics: Looking at the beautiful shapes of swarms, Networks and Heterogeneous Media, 6 (2011), 383-399.  doi: 10.3934/nhm.2011.6.383. [6] N. Bellomo, A. Bellouquid and D. Knopoff, From the microscale to collective crowd dynamics, Society for Industrial and Applied Mathematics Multiscale Modeling and Simulation, 11 (2013), 943-963.  doi: 10.1137/130904569. [7] N. Bellomo, A. Bellouquid, L. Gibelli and N. Outada, A Quest Towards a Mathematical Theory of Living Systems, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser/Springer, Cham, 2017. doi: 10.1007/978-3-319-57436-3. [8] N. Bellomo and C. Dogbe, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, Society for Industrial and Applied Mathematics Review, 53 (2011), 409-463.  doi: 10.1137/090746677. [9] N. Bellomo and L. Gibelli, Toward a mathematical theory of behavioral-social dynamics for pedestrian crowds, Mathematical Models and Methods in Applied Sciences, 25 (2015), 2417-2437.  doi: 10.1142/S0218202515400138. [10] N. Bellomo and L. Gibelli, Behavioral crowds: Modeling and Monte Carlo simulations toward validation, Computers and Fluids, 141 (2016), 13-21.  doi: 10.1016/j.compfluid.2016.04.022. [11] N. Bellomo, L. Gibelli and N. Outada, On the interplay between behavioral dynamics and social interactions in human crowds, Kinetic and Related Models, 12 (2019), 397-409.  doi: 10.3934/krm.2019017. [12] N. Bellomo, D. Knopoff and J. Soler, On the difficult interplay between life, "Complexity", and mathematical sciences, Mathematical Models and Methods in Applied Sciences, 23 (2013), 1861-1913.  doi: 10.1142/S021820251350053X. [13] N. Bellomo, B. Piccoli and A. Tosin, Modeling crowd dynamics from a complex system viewpoint, Mathematical Models and Methods in Applied Sciences, 22 (2012), 1230004, 29 pp. doi: 10.1142/S0218202512300049. [14] V. J. Blue and J. L. Adler, Cellular automata microsimulation of bidirectional pedestrian flows, Journal of Transportation Research Record, 1678 (1999), 135-141.  doi: 10.3141/1678-17. [15] V. J. Blue and J. L. Adler, Cellular automata microsimulation for modeling bi-directional pedestrian walkways, Transportation Research Part B: Methodological, 35 (2000), 293-312.  doi: 10.1016/S0191-2615(99)00052-1. [16] C. Burstedde, K. Klauck, A. Schadschneider and J. Zittartz, Simulation of pedestrian dynamics using a two-dimensional cellular automaton, Physica A: Statistical Mechanics and its Applications, 295 (2001), 507-525.  doi: 10.1016/S0378-4371(01)00141-8. [17] N. Chooramun, P. J. Lawrence and E. R. Galea, An agent based evacuation model utilising hybrid space discretisation, Safety Science, 50 (2012), 1685-1694.  doi: 10.1016/j.ssci.2011.12.022. [18] M. Chraibi, U. Kemloh, A. Schadschneider and A. Seyfried, Force-based models of pedestrian dynamics, Networks and Heterogeneous Media, 6 (2011), 425-442.  doi: 10.3934/nhm.2011.6.425. [19] M. Chraibi, A. Tordeux, A. Schadschneider and A. Seyfried, Modelling of pedestrian and evacuation dynamics, Encyclopedia of Complexity and Systems Science Series, (2019), 649–669. [20] J. C. Dai, X. Li and L. Liu, Simulation of pedestrian counter flow through bottlenecks by using an agent-based model, Physica A: Statistical Mechanics and its Applications, 392 (2013), 2202-2211.  doi: 10.1016/j.physa.2013.01.012. [21] J. Dijkstra, J. Jessurun and H. Timmermans, A multi-agent cellular automata model of pedestrian movement, Pedestrian and Evacuation Dynamics, (2001), 173–181. [22] B. Einarsson, Accuracy and Reliability in Scientific Computing, Environments, and Tools, 18. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005. doi: 10.1137/1.9780898718157. [23] R. Glowinski, Finite element Methods for incompressible viscous flow, Handbook of Numerical Analysis, Handb. Numer. Anal., IX, North-Holland, Amsterdam, 9 (2013), 3-1176. [24] D. Helbing, A mathematical model for the behavior of pedestrians, Behavioral Science, 36 (1991), 298-310.  doi: 10.1002/bs.3830360405. [25] D. Helbing, I. J. Farkas, P. Molnar and T. Vicsek, Simulation of pedestrian crowds in normal and evacuation situations, Pedestrian and Evacuation Dynamics, 21 (2002), 21-58. [26] D. Helbing and P. Molnar, Social force model for pedestrian dynamics, Physical Review E, 51 (1998), 4282-4286.  doi: 10.1103/PhysRevE.51.4282. [27] D. Helbing and T. Vicsek, Optimal self-organization, New Journal of Physics, 1 (1999). doi: 10.1088/1367-2630/1/1/313. [28] R. L. Hughes, A continuum theory for the flow of pedestrians, Transportation Research Part B: Methodological, 36 (2002), 507-535.  doi: 10.1016/S0191-2615(01)00015-7. [29] A. Johansson, D. Helbing and P. K. Shukla, Specification of the social force pedestrian model by evolutionary adjustment to video tracking data, Advances in Complex Systems, 10 (2007), 271-288.  doi: 10.1142/S0219525907001355. [30] R. J. LeVeque, Numerical Methods for Conservation Laws, Second edition, Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 1992. doi: 10.1007/978-3-0348-8629-1. [31] X. M. Li, X. D. Yan, X. G. Li and J. F. Wang, Using cellular automata to investigate pedestrian conflicts with vehicles in crosswalk at signalized intersection, Discrete Dynamics in Nature and Society, 2012 (2012), 287502, 16 pp. doi: 10.1155/2012/287502. [32] S. B. Liu, S. M. Lo, J. Ma and W. L. Wang, An agent-based microscopic pedestrian flow simulation model for pedestrian traffic problems, IEEE Transactions on Intelligent Transportation Systems, 15 (2014), 992-1001.  doi: 10.1109/TITS.2013.2292526. [33] J. Moussaïd, D. Helbing, S. Garnier, A. Johansson, M. Combe and G. Theraulaz, Experimental study of the behavioural mechanisms underlying self-organization in human crowds, Proceedings of the Royal Society B: Biological Sciences, 276 (2009), 2755-2762. [34] A. Schadschneider, W. Klingsch, H. Kluepfel, T. Kretz, C. Rogsch, A. Seyfried, Evacuation dynamics: Empirical results, modeling and applications, Extreme Environmental Events: Complexity in Forecasting and Early Warning, (2011), 517–550. [35] A. Schadschneider and A. Seyfried, Empirical results for pedestrian dynamics and their implications for modeling, Networks and Heterogeneous Media, 6 (2011), 545-560.  doi: 10.3934/nhm.2011.6.545. [36] A. Seyfried, O. Passon, B. Steffen, M. Boltes, T. Rupprecht and W. Klingsch, New insights into pedestrian flow through bottlenecks, Transportation Science, 43 (2009), 267-406.  doi: 10.1287/trsc.1090.0263. [37] A. Shende, M. P. Singh and P. Kachroo, Optimization-Based feedback control for pedestrian evacuation from an exit corridor, IEEE Transactions on Intelligent Transportation Systems, 12 (2011), 1167-1176.  doi: 10.1109/TITS.2011.2146251. [38] B. Steffen and A. Seyfried, Methods for measuring pedestrian density, flow, speed and direction with minimal scatter, Physica A: Statistical Mechanics and its Applications, 389 (2009), 1902-1910.  doi: 10.1016/j.physa.2009.12.015. [39] A. Turner and A. Penn, Encoding natural movement as an agent-based system: An investigation into human pedestrian behaviour in the built environment, Environment and Planning B: Urban Analytics and City Science, 29 (2002), 473-490.  doi: 10.1068/b12850. [40] A. U. Kemloh Wagoum, A. Tordeux and W. Liao, Understanding human queuing behaviour at exits: An empirical study, Royal Society Open Science, 4 (2017), 160896, 13 pp. doi: 10.1098/rsos.160896. [41] J. A. Ward, A. J. Evans and N. S. Malleson, Dynamic calibration of agent-based models using data assimilation, Royal Society Open Science, 3 (2016), 150703, 17 pp. doi: 10.1098/rsos.150703. [42] J. Zhang, W. Klingsch, A. Schadschneider and A. Seyfried, Transitions in pedestrian fundamental diagrams of straight corridors and T-junctions, Journal of Statistical Mechanics: Theory and Experiment, 2011 (2011). doi: 10.1088/1742-5468/2011/06/P06004. [43] B. Zhou, X. Wang and X. Tang, Understanding collective crowd behaviors: Learning a mixture model of dynamic pedestrian-Agents, 2012 IEEE Conference on Computer Vision and Pattern Recognition, (2012), 2871–2878.

show all references

##### References:
 [1] J. P. Agnelli, F. Colasuonno and D. Knopoff, A kinetic theory approach to the dynamics of crowd evacuation from bounded domains, Mathematical Models and Methods in Applied Sciences, 25 (2015), 109-129.  doi: 10.1142/S0218202515500049. [2] G. Antonini, M. Bierlaire and M. Weber, Discrete choice models of pedestrian walking behavior, Transportation Research Part B: Methodological, 40 (2006), 667-687.  doi: 10.1016/j.trb.2005.09.006. [3] M. Asano, T. Iryo and M. Kuwahara, Microscopic pedestrian simulation model combined with a tactical model for route choice behaviour, Transportation Research Part C: Emerging Technologies, 18 (2010), 842-855.  doi: 10.1016/j.trc.2010.01.005. [4] S. Bandini, S. Manzoni and G. Vizzari, Agent based modeling and simulation: An informatics perspective, Journal of Artificial Societies and Social Simulation, 12 (2009). [5] N. Bellomo and A. Bellouquid, On the modeling of crowd dynamics: Looking at the beautiful shapes of swarms, Networks and Heterogeneous Media, 6 (2011), 383-399.  doi: 10.3934/nhm.2011.6.383. [6] N. Bellomo, A. Bellouquid and D. Knopoff, From the microscale to collective crowd dynamics, Society for Industrial and Applied Mathematics Multiscale Modeling and Simulation, 11 (2013), 943-963.  doi: 10.1137/130904569. [7] N. Bellomo, A. Bellouquid, L. Gibelli and N. Outada, A Quest Towards a Mathematical Theory of Living Systems, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser/Springer, Cham, 2017. doi: 10.1007/978-3-319-57436-3. [8] N. Bellomo and C. Dogbe, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, Society for Industrial and Applied Mathematics Review, 53 (2011), 409-463.  doi: 10.1137/090746677. [9] N. Bellomo and L. Gibelli, Toward a mathematical theory of behavioral-social dynamics for pedestrian crowds, Mathematical Models and Methods in Applied Sciences, 25 (2015), 2417-2437.  doi: 10.1142/S0218202515400138. [10] N. Bellomo and L. Gibelli, Behavioral crowds: Modeling and Monte Carlo simulations toward validation, Computers and Fluids, 141 (2016), 13-21.  doi: 10.1016/j.compfluid.2016.04.022. [11] N. Bellomo, L. Gibelli and N. Outada, On the interplay between behavioral dynamics and social interactions in human crowds, Kinetic and Related Models, 12 (2019), 397-409.  doi: 10.3934/krm.2019017. [12] N. Bellomo, D. Knopoff and J. Soler, On the difficult interplay between life, "Complexity", and mathematical sciences, Mathematical Models and Methods in Applied Sciences, 23 (2013), 1861-1913.  doi: 10.1142/S021820251350053X. [13] N. Bellomo, B. Piccoli and A. Tosin, Modeling crowd dynamics from a complex system viewpoint, Mathematical Models and Methods in Applied Sciences, 22 (2012), 1230004, 29 pp. doi: 10.1142/S0218202512300049. [14] V. J. Blue and J. L. Adler, Cellular automata microsimulation of bidirectional pedestrian flows, Journal of Transportation Research Record, 1678 (1999), 135-141.  doi: 10.3141/1678-17. [15] V. J. Blue and J. L. Adler, Cellular automata microsimulation for modeling bi-directional pedestrian walkways, Transportation Research Part B: Methodological, 35 (2000), 293-312.  doi: 10.1016/S0191-2615(99)00052-1. [16] C. Burstedde, K. Klauck, A. Schadschneider and J. Zittartz, Simulation of pedestrian dynamics using a two-dimensional cellular automaton, Physica A: Statistical Mechanics and its Applications, 295 (2001), 507-525.  doi: 10.1016/S0378-4371(01)00141-8. [17] N. Chooramun, P. J. Lawrence and E. R. Galea, An agent based evacuation model utilising hybrid space discretisation, Safety Science, 50 (2012), 1685-1694.  doi: 10.1016/j.ssci.2011.12.022. [18] M. Chraibi, U. Kemloh, A. Schadschneider and A. Seyfried, Force-based models of pedestrian dynamics, Networks and Heterogeneous Media, 6 (2011), 425-442.  doi: 10.3934/nhm.2011.6.425. [19] M. Chraibi, A. Tordeux, A. Schadschneider and A. Seyfried, Modelling of pedestrian and evacuation dynamics, Encyclopedia of Complexity and Systems Science Series, (2019), 649–669. [20] J. C. Dai, X. Li and L. Liu, Simulation of pedestrian counter flow through bottlenecks by using an agent-based model, Physica A: Statistical Mechanics and its Applications, 392 (2013), 2202-2211.  doi: 10.1016/j.physa.2013.01.012. [21] J. Dijkstra, J. Jessurun and H. Timmermans, A multi-agent cellular automata model of pedestrian movement, Pedestrian and Evacuation Dynamics, (2001), 173–181. [22] B. Einarsson, Accuracy and Reliability in Scientific Computing, Environments, and Tools, 18. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005. doi: 10.1137/1.9780898718157. [23] R. Glowinski, Finite element Methods for incompressible viscous flow, Handbook of Numerical Analysis, Handb. Numer. Anal., IX, North-Holland, Amsterdam, 9 (2013), 3-1176. [24] D. Helbing, A mathematical model for the behavior of pedestrians, Behavioral Science, 36 (1991), 298-310.  doi: 10.1002/bs.3830360405. [25] D. Helbing, I. J. Farkas, P. Molnar and T. Vicsek, Simulation of pedestrian crowds in normal and evacuation situations, Pedestrian and Evacuation Dynamics, 21 (2002), 21-58. [26] D. Helbing and P. Molnar, Social force model for pedestrian dynamics, Physical Review E, 51 (1998), 4282-4286.  doi: 10.1103/PhysRevE.51.4282. [27] D. Helbing and T. Vicsek, Optimal self-organization, New Journal of Physics, 1 (1999). doi: 10.1088/1367-2630/1/1/313. [28] R. L. Hughes, A continuum theory for the flow of pedestrians, Transportation Research Part B: Methodological, 36 (2002), 507-535.  doi: 10.1016/S0191-2615(01)00015-7. [29] A. Johansson, D. Helbing and P. K. Shukla, Specification of the social force pedestrian model by evolutionary adjustment to video tracking data, Advances in Complex Systems, 10 (2007), 271-288.  doi: 10.1142/S0219525907001355. [30] R. J. LeVeque, Numerical Methods for Conservation Laws, Second edition, Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 1992. doi: 10.1007/978-3-0348-8629-1. [31] X. M. Li, X. D. Yan, X. G. Li and J. F. Wang, Using cellular automata to investigate pedestrian conflicts with vehicles in crosswalk at signalized intersection, Discrete Dynamics in Nature and Society, 2012 (2012), 287502, 16 pp. doi: 10.1155/2012/287502. [32] S. B. Liu, S. M. Lo, J. Ma and W. L. Wang, An agent-based microscopic pedestrian flow simulation model for pedestrian traffic problems, IEEE Transactions on Intelligent Transportation Systems, 15 (2014), 992-1001.  doi: 10.1109/TITS.2013.2292526. [33] J. Moussaïd, D. Helbing, S. Garnier, A. Johansson, M. Combe and G. Theraulaz, Experimental study of the behavioural mechanisms underlying self-organization in human crowds, Proceedings of the Royal Society B: Biological Sciences, 276 (2009), 2755-2762. [34] A. Schadschneider, W. Klingsch, H. Kluepfel, T. Kretz, C. Rogsch, A. Seyfried, Evacuation dynamics: Empirical results, modeling and applications, Extreme Environmental Events: Complexity in Forecasting and Early Warning, (2011), 517–550. [35] A. Schadschneider and A. Seyfried, Empirical results for pedestrian dynamics and their implications for modeling, Networks and Heterogeneous Media, 6 (2011), 545-560.  doi: 10.3934/nhm.2011.6.545. [36] A. Seyfried, O. Passon, B. Steffen, M. Boltes, T. Rupprecht and W. Klingsch, New insights into pedestrian flow through bottlenecks, Transportation Science, 43 (2009), 267-406.  doi: 10.1287/trsc.1090.0263. [37] A. Shende, M. P. Singh and P. Kachroo, Optimization-Based feedback control for pedestrian evacuation from an exit corridor, IEEE Transactions on Intelligent Transportation Systems, 12 (2011), 1167-1176.  doi: 10.1109/TITS.2011.2146251. [38] B. Steffen and A. Seyfried, Methods for measuring pedestrian density, flow, speed and direction with minimal scatter, Physica A: Statistical Mechanics and its Applications, 389 (2009), 1902-1910.  doi: 10.1016/j.physa.2009.12.015. [39] A. Turner and A. Penn, Encoding natural movement as an agent-based system: An investigation into human pedestrian behaviour in the built environment, Environment and Planning B: Urban Analytics and City Science, 29 (2002), 473-490.  doi: 10.1068/b12850. [40] A. U. Kemloh Wagoum, A. Tordeux and W. Liao, Understanding human queuing behaviour at exits: An empirical study, Royal Society Open Science, 4 (2017), 160896, 13 pp. doi: 10.1098/rsos.160896. [41] J. A. Ward, A. J. Evans and N. S. Malleson, Dynamic calibration of agent-based models using data assimilation, Royal Society Open Science, 3 (2016), 150703, 17 pp. doi: 10.1098/rsos.150703. [42] J. Zhang, W. Klingsch, A. Schadschneider and A. Seyfried, Transitions in pedestrian fundamental diagrams of straight corridors and T-junctions, Journal of Statistical Mechanics: Theory and Experiment, 2011 (2011). doi: 10.1088/1742-5468/2011/06/P06004. [43] B. Zhou, X. Wang and X. Tang, Understanding collective crowd behaviors: Learning a mixture model of dynamic pedestrian-Agents, 2012 IEEE Conference on Computer Vision and Pattern Recognition, (2012), 2871–2878.
(A) Dependence of the dimensionless velocity modulus $v$ on the dimensionless density $\rho$ for different values of the parameter $\alpha$, which represents the quality of the environment. (B) Sketch of computational domain $\Omega$ with exit $E$ and a pedestrian located at ${\boldsymbol{x}}$, moving with direction $\theta_h$. The pedestrian should choose direction ${\boldsymbol u}_E$ to reach the exit, while direction ${\boldsymbol u}_W$ is to avoid collision with the wall. The distances form the exit and from the wall are $d_E$ and $d_W$, respectively
Definition of ${\boldsymbol u}_W$ and ${\boldsymbol u}_E$ with respect to the effective area
Evacuation process of 46 pedestrians grouped into two clusters with opposite initial directions $\theta_3$ and $\theta_7$ using the medium mesh and $\Delta t_{medium}$ for time $t = 0, 1.5, 3, 6, 10.5, 13.5$ s. The color refers to density
(A) Number of pedestrians inside the room over time computed with six different combinations of mesh and time step. For ease of comparison, (B) shows only the curves in (A) obtained with simultaneous refinements of mesh and time step
Computed evacuation time from the room with one exit versus the exit size: (A) our results and (B) results from [1]
Computational domain corresponding to the experimental set-up in [40] and initial density and direction (i.e., $\theta_1$) for the experiment with 138 pedestrians
Computed (A) mean density $D_{V}$ and (B) mean flow rate $F_{V}$ as defined in (15), and measured (C) mean density and (D) mean flow rate from [40]
(A) Different velocity moduli under consideration and (B) corresponding number of pedestrians in the room versus time for the 138 pedestrian case
Density (top) and velocity magnitude with selected velocity vectors (bottom) for the evacuation process of 138 pedestrians with the purple (left), orange (middle), and blue (right) velocity moduli at time $t = 15$ s
(A) Widths of exit 2 under consideration and corresponding width ratios and (B) evacuation time versus width ratios for two different scenarios
Computational domain with effective area for (A) an obstacle placed in the middle of the room, towards the exit, and (B) two obstacles placed symmetrically with respect to the exit
Configuration 1 with $\alpha = 1$ in the effective area: computed density for $t$ = 0, 3, 6, 7.5, 9, 13.5 s. The small square within the effective area represents the real obstacle
Configuration 1 with $\alpha = 0$ in the effective area: computed density for $t$ = 0, 3, 6, 7.5, 9, 13.5 s. The small rectangle within the effective area represents the real obstacle
Configuration 2 with $\alpha = 1$ in the effective area: computed density for $t$ = 0, 3, 6, 7.5, 10.5, 13.5 s. The small square within the effective area represents the real obstacle
Configuration 2 with $\alpha = 0$ in the effective area: computed density for $t$ = 0, 3, 6, 7.5, 10.5, 13.5 s s. The small rectangle within the effective area represents the real obstacle
Evacuation times for the room with no obstacles ($\alpha = 1$ everywhere in the domain), for room with one and two obstacles with $\alpha = 1$ and $\alpha = 0$ in the effective area
The movement process of 98 pedestrians grouped into four clusters with opposite initial direction $\theta_1$ and $\theta_5$ in the periodic corridor for $t = 0, 4.2, 12.3, 19.8, 33.9, 50.7, 72.3$ s, respectively
The movement process of 188 pedestrians grouped into four clusters with initial opposite direction $\theta_1$ and $\theta_5$ in the periodic corridor for $t = 0, 4.5, 12.6, 19.8, 33.9, 50.7, 89.7$ s, respectively
 [1] Marzia Bisi, Giampiero Spiga. A Boltzmann-type model for market economy and its continuous trading limit. Kinetic and Related Models, 2010, 3 (2) : 223-239. doi: 10.3934/krm.2010.3.223 [2] Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250 [3] Martin Parisot, Mirosław Lachowicz. A kinetic model for the formation of swarms with nonlinear interactions. Kinetic and Related Models, 2016, 9 (1) : 131-164. doi: 10.3934/krm.2016.9.131 [4] Carlo Brugna, Giuseppe Toscani. Boltzmann-type models for price formation in the presence of behavioral aspects. Networks and Heterogeneous Media, 2015, 10 (3) : 543-557. doi: 10.3934/nhm.2015.10.543 [5] Nadia Loy, Andrea Tosin. Boltzmann-type equations for multi-agent systems with label switching. Kinetic and Related Models, 2021, 14 (5) : 867-894. doi: 10.3934/krm.2021027 [6] Veronika Schleper. A hybrid model for traffic flow and crowd dynamics with random individual properties. Mathematical Biosciences & Engineering, 2015, 12 (2) : 393-413. doi: 10.3934/mbe.2015.12.393 [7] Jingwei Hu, Shi Jin, Li Wang. An asymptotic-preserving scheme for the semiconductor Boltzmann equation with two-scale collisions: A splitting approach. Kinetic and Related Models, 2015, 8 (4) : 707-723. doi: 10.3934/krm.2015.8.707 [8] Berat Karaagac. Numerical treatment of Gray-Scott model with operator splitting method. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2373-2386. doi: 10.3934/dcdss.2020143 [9] Antoine Hochart. An accretive operator approach to ergodic zero-sum stochastic games. Journal of Dynamics and Games, 2019, 6 (1) : 27-51. doi: 10.3934/jdg.2019003 [10] Mengxin Chen, Ranchao Wu, Yancong Xu. Dynamics of a depletion-type Gierer-Meinhardt model with Langmuir-Hinshelwood reaction scheme. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2275-2312. doi: 10.3934/dcdsb.2021132 [11] Martin Burger, Marco Di Francesco, Peter A. Markowich, Marie-Therese Wolfram. Mean field games with nonlinear mobilities in pedestrian dynamics. Discrete and Continuous Dynamical Systems - B, 2014, 19 (5) : 1311-1333. doi: 10.3934/dcdsb.2014.19.1311 [12] Nicolas Crouseilles, Mohammed Lemou, SV Raghurama Rao, Ankit Ruhi, Muddu Sekhar. Asymptotic preserving scheme for a kinetic model describing incompressible fluids. Kinetic and Related Models, 2016, 9 (1) : 51-74. doi: 10.3934/krm.2016.9.51 [13] Kangkang Deng, Zheng Peng, Jianli Chen. Sparse probabilistic Boolean network problems: A partial proximal-type operator splitting method. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1881-1896. doi: 10.3934/jimo.2018127 [14] Feng Rao, Carlos Castillo-Chavez, Yun Kang. Dynamics of a stochastic delayed Harrison-type predation model: Effects of delay and stochastic components. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1401-1423. doi: 10.3934/mbe.2018064 [15] Pierre Degond, Simone Goettlich, Axel Klar, Mohammed Seaid, Andreas Unterreiter. Derivation of a kinetic model from a stochastic particle system. Kinetic and Related Models, 2008, 1 (4) : 557-572. doi: 10.3934/krm.2008.1.557 [16] Andreas C. Aristotelous, Ohannes Karakashian, Steven M. Wise. A mixed discontinuous Galerkin, convex splitting scheme for a modified Cahn-Hilliard equation and an efficient nonlinear multigrid solver. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2211-2238. doi: 10.3934/dcdsb.2013.18.2211 [17] Nicola Bellomo, Abdelghani Bellouquid. On the modeling of crowd dynamics: Looking at the beautiful shapes of swarms. Networks and Heterogeneous Media, 2011, 6 (3) : 383-399. doi: 10.3934/nhm.2011.6.383 [18] Yunmei Chen, Xianqi Li, Yuyuan Ouyang, Eduardo Pasiliao. Accelerated bregman operator splitting with backtracking. Inverse Problems and Imaging, 2017, 11 (6) : 1047-1070. doi: 10.3934/ipi.2017048 [19] Manuel González-Navarrete. Type-dependent stochastic Ising model describing the dynamics of a non-symmetric feedback module. Mathematical Biosciences & Engineering, 2016, 13 (5) : 981-998. doi: 10.3934/mbe.2016026 [20] Daniel Brinkman, Christian Ringhofer. A kinetic games framework for insurance plans. Kinetic and Related Models, 2017, 10 (1) : 93-116. doi: 10.3934/krm.2017004

2020 Impact Factor: 1.432