
-
Previous Article
Focusing solutions of the Vlasov-Poisson system
- KRM Home
- This Issue
-
Next Article
A kinetic theory approach to model pedestrian dynamics in bounded domains with obstacles
Large amplitude stationary solutions of the Morrow model of gas ionization
1. | Department of Mathematics and Lefschetz Center for Dynamical Systems, Brown University, Providence, RI 02912, USA |
2. | Department of Computer Science and Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan |
We consider the steady states of a gas between two parallel plates that is ionized by a strong electric field so as to create a plasma. We use global bifurcation theory to prove that there is a curve $ \mathcal{K} $ of such states with the following property. The curve begins at the sparking voltage and either the particle density becomes unbounded or the curve ends at the anti-sparking voltage.
References:
[1] |
I. Abbas and P. Bayle,
A critical analysis of ionising wave propagation mechanisms in breakdown, J. Phys. D: Appl. Phys., 13 (1980), 1055-1068.
doi: 10.1088/0022-3727/13/6/015. |
[2] |
Y. A. Abramovich and C. D. Aliprantis, An Invitation to Operator Theory, Graduate Studies in Mathematics, 50. American Mathematical Society, Providence, 2002.
doi: 10.1090/gsm/050. |
[3] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, 2011. |
[4] |
B. Buffoni and J. Toland, Analytic Theory of Global Bifurcation: An Introduction, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ, 2003.
doi: 10.1515/9781400884339.![]() ![]() ![]() |
[5] |
A. Constantin, W. Strauss and E. Vǎrvǎrucǎ,
Global bifurcation of steady gravity water waves with critical layers, Acta. Math., 217 (2016), 195-262.
doi: 10.1007/s11511-017-0144-x. |
[6] |
M. G. Crandall and P. H. Rabinowitz,
Nonlinear Sturm-Liouville eigenvalue problems and topological degree, J. Math. Mech., 19 (1969/1970), 1083-1102.
|
[7] |
E. N. Dancer,
Bifurcation theory for analytic operators, Proc. London Math. Soc., 26 (1973), 359-384.
doi: 10.1112/plms/s3-26.2.359. |
[8] |
P. Degond and B. Lucquin-Desreux,
Mathematical models of electrical discharges in air at atmospheric pressure: A derivation from asymptotic analysis, Int. J. Compu. Sci. Math., 1 (2007), 58-97.
doi: 10.1504/IJCSM.2007.013764. |
[9] |
S. K. Dhali and P. F. Williams,
Twodimensional studies of streamers in gases, J. Appl. Phys., 62 (1987), 4694-4707.
|
[10] |
P. A. Durbin and L. Turyn,
Analysis of the positive DC corona between coaxial cylinders, J. Phys. D: Appl. Phys., 20 (1987), 1490-1496.
doi: 10.1088/0022-3727/20/11/020. |
[11] |
H. Kielhöfer, Bifurcation Theory, An Introduction with Applications to Partial Differential Equations, Second edition, Applied Mathematical Sciences, 156. Springer, New York, 2012.
doi: 10.1007/978-1-4614-0502-3. |
[12] |
A. A. Kulikovsky,
Positive streamer between parallel plate electrodes in atmospheric pressure air, IEEE Trans. Plasma Sci., 30 (1997), 441-450.
doi: 10.1088/0022-3727/30/3/017. |
[13] |
A. A. Kulikovsky,
The role of photoionization in positive streamer dynamics, J. Phys. D: Appl. Phys., 33 (2000), 1514-1524.
doi: 10.1088/0022-3727/33/12/314. |
[14] |
A. Luque, V. Ratushnaya and U. Ebert, Positive and negative streamers in ambient air: Modeling evolution and velocities, J. Phys. D: Appl. Phys., 41 (2008), 234005.
doi: 10.1088/0022-3727/41/23/234005. |
[15] |
R. Morrow,
Theory of negative corona in oxygen, Phys. Rev. A, 32 (1985), 1799-1809.
doi: 10.1103/PhysRevA.32.1799. |
[16] |
P. H. Rabinowitz,
Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513.
doi: 10.1016/0022-1236(71)90030-9. |
[17] | |
[18] |
M. Suzuki and A. Tani,
Time-local solvability of the Degond-Lucquin-Desreux-Morrow model for gas discharge, SIAM Math. Anal., 50 (2018), 5096-5118.
doi: 10.1137/17M111852X. |
[19] |
M. Suzuki and A. Tani, Bifurcation analysis of the Degond-Lucquin-Desreux-Morrow model for gas discharge, submitted.
doi: 10.1137/17M111852X. |
[20] |
J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, 1987.
doi: 10.1017/CBO9781139171755.![]() ![]() ![]() |
[21] |
show all references
References:
[1] |
I. Abbas and P. Bayle,
A critical analysis of ionising wave propagation mechanisms in breakdown, J. Phys. D: Appl. Phys., 13 (1980), 1055-1068.
doi: 10.1088/0022-3727/13/6/015. |
[2] |
Y. A. Abramovich and C. D. Aliprantis, An Invitation to Operator Theory, Graduate Studies in Mathematics, 50. American Mathematical Society, Providence, 2002.
doi: 10.1090/gsm/050. |
[3] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, 2011. |
[4] |
B. Buffoni and J. Toland, Analytic Theory of Global Bifurcation: An Introduction, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ, 2003.
doi: 10.1515/9781400884339.![]() ![]() ![]() |
[5] |
A. Constantin, W. Strauss and E. Vǎrvǎrucǎ,
Global bifurcation of steady gravity water waves with critical layers, Acta. Math., 217 (2016), 195-262.
doi: 10.1007/s11511-017-0144-x. |
[6] |
M. G. Crandall and P. H. Rabinowitz,
Nonlinear Sturm-Liouville eigenvalue problems and topological degree, J. Math. Mech., 19 (1969/1970), 1083-1102.
|
[7] |
E. N. Dancer,
Bifurcation theory for analytic operators, Proc. London Math. Soc., 26 (1973), 359-384.
doi: 10.1112/plms/s3-26.2.359. |
[8] |
P. Degond and B. Lucquin-Desreux,
Mathematical models of electrical discharges in air at atmospheric pressure: A derivation from asymptotic analysis, Int. J. Compu. Sci. Math., 1 (2007), 58-97.
doi: 10.1504/IJCSM.2007.013764. |
[9] |
S. K. Dhali and P. F. Williams,
Twodimensional studies of streamers in gases, J. Appl. Phys., 62 (1987), 4694-4707.
|
[10] |
P. A. Durbin and L. Turyn,
Analysis of the positive DC corona between coaxial cylinders, J. Phys. D: Appl. Phys., 20 (1987), 1490-1496.
doi: 10.1088/0022-3727/20/11/020. |
[11] |
H. Kielhöfer, Bifurcation Theory, An Introduction with Applications to Partial Differential Equations, Second edition, Applied Mathematical Sciences, 156. Springer, New York, 2012.
doi: 10.1007/978-1-4614-0502-3. |
[12] |
A. A. Kulikovsky,
Positive streamer between parallel plate electrodes in atmospheric pressure air, IEEE Trans. Plasma Sci., 30 (1997), 441-450.
doi: 10.1088/0022-3727/30/3/017. |
[13] |
A. A. Kulikovsky,
The role of photoionization in positive streamer dynamics, J. Phys. D: Appl. Phys., 33 (2000), 1514-1524.
doi: 10.1088/0022-3727/33/12/314. |
[14] |
A. Luque, V. Ratushnaya and U. Ebert, Positive and negative streamers in ambient air: Modeling evolution and velocities, J. Phys. D: Appl. Phys., 41 (2008), 234005.
doi: 10.1088/0022-3727/41/23/234005. |
[15] |
R. Morrow,
Theory of negative corona in oxygen, Phys. Rev. A, 32 (1985), 1799-1809.
doi: 10.1103/PhysRevA.32.1799. |
[16] |
P. H. Rabinowitz,
Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513.
doi: 10.1016/0022-1236(71)90030-9. |
[17] | |
[18] |
M. Suzuki and A. Tani,
Time-local solvability of the Degond-Lucquin-Desreux-Morrow model for gas discharge, SIAM Math. Anal., 50 (2018), 5096-5118.
doi: 10.1137/17M111852X. |
[19] |
M. Suzuki and A. Tani, Bifurcation analysis of the Degond-Lucquin-Desreux-Morrow model for gas discharge, submitted.
doi: 10.1137/17M111852X. |
[20] |
J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, 1987.
doi: 10.1017/CBO9781139171755.![]() ![]() ![]() |
[21] |
[1] |
Tatsien Li, Libin Wang. Global classical solutions to a kind of mixed initial-boundary value problem for quasilinear hyperbolic systems. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 59-78. doi: 10.3934/dcds.2005.12.59 |
[2] |
Shitao Liu, Roberto Triggiani. Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness. Conference Publications, 2011, 2011 (Special) : 1001-1014. doi: 10.3934/proc.2011.2011.1001 |
[3] |
Francesca R. Guarguaglini. Global solutions for a chemotaxis hyperbolic-parabolic system on networks with nonhomogeneous boundary conditions. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1057-1087. doi: 10.3934/cpaa.2020049 |
[4] |
G. Métivier, K. Zumbrun. Symmetrizers and continuity of stable subspaces for parabolic-hyperbolic boundary value problems. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 205-220. doi: 10.3934/dcds.2004.11.205 |
[5] |
Matthias Eller, Daniel Toundykov. Carleman estimates for elliptic boundary value problems with applications to the stablization of hyperbolic systems. Evolution Equations and Control Theory, 2012, 1 (2) : 271-296. doi: 10.3934/eect.2012.1.271 |
[6] |
Chan-Gyun Kim, Yong-Hoon Lee. A bifurcation result for two point boundary value problem with a strong singularity. Conference Publications, 2011, 2011 (Special) : 834-843. doi: 10.3934/proc.2011.2011.834 |
[7] |
Bopeng Rao, Xu Zhang. Frequency domain approach to decay rates for a coupled hyperbolic-parabolic system. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2789-2809. doi: 10.3934/cpaa.2021119 |
[8] |
Mark I. Vishik, Sergey Zelik. Attractors for the nonlinear elliptic boundary value problems and their parabolic singular limit. Communications on Pure and Applied Analysis, 2014, 13 (5) : 2059-2093. doi: 10.3934/cpaa.2014.13.2059 |
[9] |
Tong Yang, Fahuai Yi. Global existence and uniqueness for a hyperbolic system with free boundary. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 763-780. doi: 10.3934/dcds.2001.7.763 |
[10] |
Francisco Ortegón Gallego, María Teresa González Montesinos. Existence of a capacity solution to a coupled nonlinear parabolic--elliptic system. Communications on Pure and Applied Analysis, 2007, 6 (1) : 23-42. doi: 10.3934/cpaa.2007.6.23 |
[11] |
Jun Zhou. Initial boundary value problem for a inhomogeneous pseudo-parabolic equation. Electronic Research Archive, 2020, 28 (1) : 67-90. doi: 10.3934/era.2020005 |
[12] |
Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems and Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355 |
[13] |
Angelo Favini, Rabah Labbas, Stéphane Maingot, Maëlis Meisner. Boundary value problem for elliptic differential equations in non-commutative cases. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 4967-4990. doi: 10.3934/dcds.2013.33.4967 |
[14] |
Brahim Allal, Abdelkarim Hajjaj, Jawad Salhi, Amine Sbai. Boundary controllability for a coupled system of degenerate/singular parabolic equations. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021055 |
[15] |
Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure and Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319 |
[16] |
Julián López-Gómez, Marcela Molina-Meyer, Paul H. Rabinowitz. Global bifurcation diagrams of one node solutions in a class of degenerate boundary value problems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 923-946. doi: 10.3934/dcdsb.2017047 |
[17] |
Takashi Narazaki. Global solutions to the Cauchy problem for the weakly coupled system of damped wave equations. Conference Publications, 2009, 2009 (Special) : 592-601. doi: 10.3934/proc.2009.2009.592 |
[18] |
Hua Chen, Wenbin Lv, Shaohua Wu. A free boundary problem for a class of parabolic-elliptic type chemotaxis model. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2577-2592. doi: 10.3934/cpaa.2018122 |
[19] |
Shao-Yuan Huang, Shin-Hwa Wang. On S-shaped bifurcation curves for a two-point boundary value problem arising in a theory of thermal explosion. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 4839-4858. doi: 10.3934/dcds.2015.35.4839 |
[20] |
Louis Tebou. Stabilization of some coupled hyperbolic/parabolic equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1601-1620. doi: 10.3934/dcdsb.2010.14.1601 |
2021 Impact Factor: 1.398
Tools
Metrics
Other articles
by authors
[Back to Top]