-
Previous Article
Mean-field limit of a spatially-extended FitzHugh-Nagumo neural network
- KRM Home
- This Issue
-
Next Article
Large amplitude stationary solutions of the Morrow model of gas ionization
Focusing solutions of the Vlasov-Poisson system
Department of Mathematics, Brown University, 151 Thayer Street, Providence, RI 02912, USA |
We study smooth, spherically-symmetric solutions to the Vlasov-Poisson system and relativistic Vlasov-Poisson system in the plasma physical case. We construct solutions that initially possess arbitrarily small $ C^k $ norms ($ k \geq 1 $) for the charge densities and the electric fields, but attain arbitrarily large $ L^\infty $ norms of them at some later time.
References:
[1] |
J. Ben-Artzi, S. Calogero and S. Pankavich,
Arbitrarily large solutions of the Vlasov-Poisson system, SIAM Journal on Mathematical Analysis, 50 (2018), 4311-4326.
doi: 10.1137/17M1142715. |
[2] |
J. Ben-Artzi, S. Calogero and S. Pankavich, Concentrating solutions of the relativistic Vlasov-Maxwell system, Commun. Math. Sci., 17 (2019), 377–392, arXiv: 1807.02801.
doi: 10.4310/CMS.2019.v17.n2.a4. |
[3] |
J. P. Friedberg, Ideal Magnetohydrodynamics, Plenum Press, New York, 1987.
![]() |
[4] |
R. T. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996.
doi: 10.1137/1.9781611971477. |
[5] |
R. Glassey, S. Pankavich and J. Schaeffer,
Decay in time for a one-dimensional two-component plasma, Math. Methods Appl. Sci., 31 (2008), 2115-2132.
doi: 10.1002/mma.1015. |
[6] |
R. Glassey, S. Pankavich and J. Schaeffer,
On long-time behavior of monocharged and neutral plasma in one and one-half dimensions, Kinetic and Related Models, 2 (2009), 465-488.
doi: 10.3934/krm.2009.2.465. |
[7] |
R. Glassey, S. Pankavich and J. Schaeffer,
Large time behavior of the relativistic Vlasov-Maxwell system in low space dimension, Differential and Integral Equations, 23 (2010), 61-77.
|
[8] |
R. Glassey, S. Pankavich and J. Schaeffer,
Time decay for solutions to one-dimensional two component plasma equations, Quarterly of Applied Mathematics, 68 (2010), 135-141.
doi: 10.1090/S0033-569X-09-01143-4. |
[9] |
R. T. Glassey and J. Schaeffer,
On symmetric solutions of the relativistic Vlasov-Poisson system, Comm. Math. Phys., 101 (1985), 459-473.
doi: 10.1007/BF01210740. |
[10] |
E. Horst,
Symmetric plasmas and their decay, Comm. Math. Phys., 126 (1990), 613-633.
doi: 10.1007/BF02125703. |
[11] |
R. Illner and G. Rein,
Time decay of the solutions of the Vlasov-Poisson system in the plasma physical case, Math. Methods Appl. Sci., 19 (1996), 1409-1413.
doi: 10.1002/(SICI)1099-1476(19961125)19:17<1409::AID-MMA836>3.0.CO;2-2. |
[12] |
P.-L. Lions and B. Perthame,
Propogation of moments and regularity for the three dimensional Vlasov-Poisson system, Invent. Math., 105 (1991), 415-430.
doi: 10.1007/BF01232273. |
[13] |
D. R. Nicholson, Introduction to Plasma Theory, Wiley, New York, 1983. |
[14] |
K. Pfaffelmoser,
Global classical solution of the Vlasov-Poisson system in three dimensions for general initial data, J. Diff. Eq., 95 (1992), 281-303.
doi: 10.1016/0022-0396(92)90033-J. |
[15] |
G. Rein and L. Taegert,
Gravitational collapse and the Vlasov-Poisson system, Annales Henri Poincaré, 17 (2016), 1415-1427.
doi: 10.1007/s00023-015-0424-y. |
show all references
References:
[1] |
J. Ben-Artzi, S. Calogero and S. Pankavich,
Arbitrarily large solutions of the Vlasov-Poisson system, SIAM Journal on Mathematical Analysis, 50 (2018), 4311-4326.
doi: 10.1137/17M1142715. |
[2] |
J. Ben-Artzi, S. Calogero and S. Pankavich, Concentrating solutions of the relativistic Vlasov-Maxwell system, Commun. Math. Sci., 17 (2019), 377–392, arXiv: 1807.02801.
doi: 10.4310/CMS.2019.v17.n2.a4. |
[3] |
J. P. Friedberg, Ideal Magnetohydrodynamics, Plenum Press, New York, 1987.
![]() |
[4] |
R. T. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996.
doi: 10.1137/1.9781611971477. |
[5] |
R. Glassey, S. Pankavich and J. Schaeffer,
Decay in time for a one-dimensional two-component plasma, Math. Methods Appl. Sci., 31 (2008), 2115-2132.
doi: 10.1002/mma.1015. |
[6] |
R. Glassey, S. Pankavich and J. Schaeffer,
On long-time behavior of monocharged and neutral plasma in one and one-half dimensions, Kinetic and Related Models, 2 (2009), 465-488.
doi: 10.3934/krm.2009.2.465. |
[7] |
R. Glassey, S. Pankavich and J. Schaeffer,
Large time behavior of the relativistic Vlasov-Maxwell system in low space dimension, Differential and Integral Equations, 23 (2010), 61-77.
|
[8] |
R. Glassey, S. Pankavich and J. Schaeffer,
Time decay for solutions to one-dimensional two component plasma equations, Quarterly of Applied Mathematics, 68 (2010), 135-141.
doi: 10.1090/S0033-569X-09-01143-4. |
[9] |
R. T. Glassey and J. Schaeffer,
On symmetric solutions of the relativistic Vlasov-Poisson system, Comm. Math. Phys., 101 (1985), 459-473.
doi: 10.1007/BF01210740. |
[10] |
E. Horst,
Symmetric plasmas and their decay, Comm. Math. Phys., 126 (1990), 613-633.
doi: 10.1007/BF02125703. |
[11] |
R. Illner and G. Rein,
Time decay of the solutions of the Vlasov-Poisson system in the plasma physical case, Math. Methods Appl. Sci., 19 (1996), 1409-1413.
doi: 10.1002/(SICI)1099-1476(19961125)19:17<1409::AID-MMA836>3.0.CO;2-2. |
[12] |
P.-L. Lions and B. Perthame,
Propogation of moments and regularity for the three dimensional Vlasov-Poisson system, Invent. Math., 105 (1991), 415-430.
doi: 10.1007/BF01232273. |
[13] |
D. R. Nicholson, Introduction to Plasma Theory, Wiley, New York, 1983. |
[14] |
K. Pfaffelmoser,
Global classical solution of the Vlasov-Poisson system in three dimensions for general initial data, J. Diff. Eq., 95 (1992), 281-303.
doi: 10.1016/0022-0396(92)90033-J. |
[15] |
G. Rein and L. Taegert,
Gravitational collapse and the Vlasov-Poisson system, Annales Henri Poincaré, 17 (2016), 1415-1427.
doi: 10.1007/s00023-015-0424-y. |
[1] |
Jack Schaeffer. On time decay for the spherically symmetric Vlasov-Poisson system. Kinetic and Related Models, 2022, 15 (4) : 721-727. doi: 10.3934/krm.2021021 |
[2] |
Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361 |
[3] |
Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71 |
[4] |
Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure and Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034 |
[5] |
Jinmyong An, Roesong Jang, Jinmyong Kim. Global existence and blow-up for the focusing inhomogeneous nonlinear Schrödinger equation with inverse-square potential. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022111 |
[6] |
Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic and Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129 |
[7] |
Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089 |
[8] |
Frank Merle, Hatem Zaag. O.D.E. type behavior of blow-up solutions of nonlinear heat equations. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 435-450. doi: 10.3934/dcds.2002.8.435 |
[9] |
Anthony Suen. Existence and a blow-up criterion of solution to the 3D compressible Navier-Stokes-Poisson equations with finite energy. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1775-1798. doi: 10.3934/dcds.2020093 |
[10] |
Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control and Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119 |
[11] |
Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225 |
[12] |
Frédéric Abergel, Jean-Michel Rakotoson. Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1809-1818. doi: 10.3934/dcds.2013.33.1809 |
[13] |
Joackim Bernier, Michel Mehrenberger. Long-time behavior of second order linearized Vlasov-Poisson equations near a homogeneous equilibrium. Kinetic and Related Models, 2020, 13 (1) : 129-168. doi: 10.3934/krm.2020005 |
[14] |
Mihaï Bostan. Asymptotic behavior for the Vlasov-Poisson equations with strong uniform magnetic field and general initial conditions. Kinetic and Related Models, 2020, 13 (3) : 531-548. doi: 10.3934/krm.2020018 |
[15] |
Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1 |
[16] |
Pablo Álvarez-Caudevilla, Jonathan D. Evans, Victor A. Galaktionov. Gradient blow-up for a fourth-order quasilinear Boussinesq-type equation. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3913-3938. doi: 10.3934/dcds.2018170 |
[17] |
Xiaoliang Li, Baiyu Liu. Finite time blow-up and global solutions for a nonlocal parabolic equation with Hartree type nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3093-3112. doi: 10.3934/cpaa.2020134 |
[18] |
Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085 |
[19] |
Jens Lorenz, Wilberclay G. Melo, Natã Firmino Rocha. The Magneto–Hydrodynamic equations: Local theory and blow-up of solutions. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3819-3841. doi: 10.3934/dcdsb.2018332 |
[20] |
Qiong Chen, Chunlai Mu, Zhaoyin Xiang. Blow-up and asymptotic behavior of solutions to a semilinear integrodifferential system. Communications on Pure and Applied Analysis, 2006, 5 (3) : 435-446. doi: 10.3934/cpaa.2006.5.435 |
2021 Impact Factor: 1.398
Tools
Metrics
Other articles
by authors
[Back to Top]