December  2019, 12(6): 1313-1327. doi: 10.3934/krm.2019051

Focusing solutions of the Vlasov-Poisson system

Department of Mathematics, Brown University, 151 Thayer Street, Providence, RI 02912, USA

Received  February 2019 Revised  May 2019 Published  September 2019

We study smooth, spherically-symmetric solutions to the Vlasov-Poisson system and relativistic Vlasov-Poisson system in the plasma physical case. We construct solutions that initially possess arbitrarily small $ C^k $ norms ($ k \geq 1 $) for the charge densities and the electric fields, but attain arbitrarily large $ L^\infty $ norms of them at some later time.

Citation: Katherine Zhiyuan Zhang. Focusing solutions of the Vlasov-Poisson system. Kinetic & Related Models, 2019, 12 (6) : 1313-1327. doi: 10.3934/krm.2019051
References:
[1]

J. Ben-ArtziS. Calogero and S. Pankavich, Arbitrarily large solutions of the Vlasov-Poisson system, SIAM Journal on Mathematical Analysis, 50 (2018), 4311-4326.  doi: 10.1137/17M1142715.  Google Scholar

[2]

J. Ben-Artzi, S. Calogero and S. Pankavich, Concentrating solutions of the relativistic Vlasov-Maxwell system, Commun. Math. Sci., 17 (2019), 377–392, arXiv: 1807.02801. doi: 10.4310/CMS.2019.v17.n2.a4.  Google Scholar

[3] J. P. Friedberg, Ideal Magnetohydrodynamics, Plenum Press, New York, 1987.   Google Scholar
[4]

R. T. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. doi: 10.1137/1.9781611971477.  Google Scholar

[5]

R. GlasseyS. Pankavich and J. Schaeffer, Decay in time for a one-dimensional two-component plasma, Math. Methods Appl. Sci., 31 (2008), 2115-2132.  doi: 10.1002/mma.1015.  Google Scholar

[6]

R. GlasseyS. Pankavich and J. Schaeffer, On long-time behavior of monocharged and neutral plasma in one and one-half dimensions, Kinetic and Related Models, 2 (2009), 465-488.  doi: 10.3934/krm.2009.2.465.  Google Scholar

[7]

R. GlasseyS. Pankavich and J. Schaeffer, Large time behavior of the relativistic Vlasov-Maxwell system in low space dimension, Differential and Integral Equations, 23 (2010), 61-77.   Google Scholar

[8]

R. GlasseyS. Pankavich and J. Schaeffer, Time decay for solutions to one-dimensional two component plasma equations, Quarterly of Applied Mathematics, 68 (2010), 135-141.  doi: 10.1090/S0033-569X-09-01143-4.  Google Scholar

[9]

R. T. Glassey and J. Schaeffer, On symmetric solutions of the relativistic Vlasov-Poisson system, Comm. Math. Phys., 101 (1985), 459-473.  doi: 10.1007/BF01210740.  Google Scholar

[10]

E. Horst, Symmetric plasmas and their decay, Comm. Math. Phys., 126 (1990), 613-633.  doi: 10.1007/BF02125703.  Google Scholar

[11]

R. Illner and G. Rein, Time decay of the solutions of the Vlasov-Poisson system in the plasma physical case, Math. Methods Appl. Sci., 19 (1996), 1409-1413.  doi: 10.1002/(SICI)1099-1476(19961125)19:17<1409::AID-MMA836>3.0.CO;2-2.  Google Scholar

[12]

P.-L. Lions and B. Perthame, Propogation of moments and regularity for the three dimensional Vlasov-Poisson system, Invent. Math., 105 (1991), 415-430.  doi: 10.1007/BF01232273.  Google Scholar

[13]

D. R. Nicholson, Introduction to Plasma Theory, Wiley, New York, 1983. Google Scholar

[14]

K. Pfaffelmoser, Global classical solution of the Vlasov-Poisson system in three dimensions for general initial data, J. Diff. Eq., 95 (1992), 281-303.  doi: 10.1016/0022-0396(92)90033-J.  Google Scholar

[15]

G. Rein and L. Taegert, Gravitational collapse and the Vlasov-Poisson system, Annales Henri Poincaré, 17 (2016), 1415-1427.  doi: 10.1007/s00023-015-0424-y.  Google Scholar

show all references

References:
[1]

J. Ben-ArtziS. Calogero and S. Pankavich, Arbitrarily large solutions of the Vlasov-Poisson system, SIAM Journal on Mathematical Analysis, 50 (2018), 4311-4326.  doi: 10.1137/17M1142715.  Google Scholar

[2]

J. Ben-Artzi, S. Calogero and S. Pankavich, Concentrating solutions of the relativistic Vlasov-Maxwell system, Commun. Math. Sci., 17 (2019), 377–392, arXiv: 1807.02801. doi: 10.4310/CMS.2019.v17.n2.a4.  Google Scholar

[3] J. P. Friedberg, Ideal Magnetohydrodynamics, Plenum Press, New York, 1987.   Google Scholar
[4]

R. T. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. doi: 10.1137/1.9781611971477.  Google Scholar

[5]

R. GlasseyS. Pankavich and J. Schaeffer, Decay in time for a one-dimensional two-component plasma, Math. Methods Appl. Sci., 31 (2008), 2115-2132.  doi: 10.1002/mma.1015.  Google Scholar

[6]

R. GlasseyS. Pankavich and J. Schaeffer, On long-time behavior of monocharged and neutral plasma in one and one-half dimensions, Kinetic and Related Models, 2 (2009), 465-488.  doi: 10.3934/krm.2009.2.465.  Google Scholar

[7]

R. GlasseyS. Pankavich and J. Schaeffer, Large time behavior of the relativistic Vlasov-Maxwell system in low space dimension, Differential and Integral Equations, 23 (2010), 61-77.   Google Scholar

[8]

R. GlasseyS. Pankavich and J. Schaeffer, Time decay for solutions to one-dimensional two component plasma equations, Quarterly of Applied Mathematics, 68 (2010), 135-141.  doi: 10.1090/S0033-569X-09-01143-4.  Google Scholar

[9]

R. T. Glassey and J. Schaeffer, On symmetric solutions of the relativistic Vlasov-Poisson system, Comm. Math. Phys., 101 (1985), 459-473.  doi: 10.1007/BF01210740.  Google Scholar

[10]

E. Horst, Symmetric plasmas and their decay, Comm. Math. Phys., 126 (1990), 613-633.  doi: 10.1007/BF02125703.  Google Scholar

[11]

R. Illner and G. Rein, Time decay of the solutions of the Vlasov-Poisson system in the plasma physical case, Math. Methods Appl. Sci., 19 (1996), 1409-1413.  doi: 10.1002/(SICI)1099-1476(19961125)19:17<1409::AID-MMA836>3.0.CO;2-2.  Google Scholar

[12]

P.-L. Lions and B. Perthame, Propogation of moments and regularity for the three dimensional Vlasov-Poisson system, Invent. Math., 105 (1991), 415-430.  doi: 10.1007/BF01232273.  Google Scholar

[13]

D. R. Nicholson, Introduction to Plasma Theory, Wiley, New York, 1983. Google Scholar

[14]

K. Pfaffelmoser, Global classical solution of the Vlasov-Poisson system in three dimensions for general initial data, J. Diff. Eq., 95 (1992), 281-303.  doi: 10.1016/0022-0396(92)90033-J.  Google Scholar

[15]

G. Rein and L. Taegert, Gravitational collapse and the Vlasov-Poisson system, Annales Henri Poincaré, 17 (2016), 1415-1427.  doi: 10.1007/s00023-015-0424-y.  Google Scholar

[1]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[2]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic & Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129

[3]

Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034

[4]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[5]

Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089

[6]

Frank Merle, Hatem Zaag. O.D.E. type behavior of blow-up solutions of nonlinear heat equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 435-450. doi: 10.3934/dcds.2002.8.435

[7]

Anthony Suen. Existence and a blow-up criterion of solution to the 3D compressible Navier-Stokes-Poisson equations with finite energy. Discrete & Continuous Dynamical Systems - A, 2020, 40 (3) : 1775-1798. doi: 10.3934/dcds.2020093

[8]

Joackim Bernier, Michel Mehrenberger. Long-time behavior of second order linearized Vlasov-Poisson equations near a homogeneous equilibrium. Kinetic & Related Models, 2020, 13 (1) : 129-168. doi: 10.3934/krm.2020005

[9]

Mihaï Bostan. Asymptotic behavior for the Vlasov-Poisson equations with strong uniform magnetic field and general initial conditions. Kinetic & Related Models, 2020, 13 (3) : 531-548. doi: 10.3934/krm.2020018

[10]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[11]

Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225

[12]

Frédéric Abergel, Jean-Michel Rakotoson. Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1809-1818. doi: 10.3934/dcds.2013.33.1809

[13]

Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1

[14]

Pablo Álvarez-Caudevilla, Jonathan D. Evans, Victor A. Galaktionov. Gradient blow-up for a fourth-order quasilinear Boussinesq-type equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3913-3938. doi: 10.3934/dcds.2018170

[15]

Xiaoliang Li, Baiyu Liu. Finite time blow-up and global solutions for a nonlocal parabolic equation with Hartree type nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3093-3112. doi: 10.3934/cpaa.2020134

[16]

Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085

[17]

Jens Lorenz, Wilberclay G. Melo, Natã Firmino Rocha. The Magneto–Hydrodynamic equations: Local theory and blow-up of solutions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3819-3841. doi: 10.3934/dcdsb.2018332

[18]

Qiong Chen, Chunlai Mu, Zhaoyin Xiang. Blow-up and asymptotic behavior of solutions to a semilinear integrodifferential system. Communications on Pure & Applied Analysis, 2006, 5 (3) : 435-446. doi: 10.3934/cpaa.2006.5.435

[19]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[20]

Blanca Ayuso, José A. Carrillo, Chi-Wang Shu. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic & Related Models, 2011, 4 (4) : 955-989. doi: 10.3934/krm.2011.4.955

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (54)
  • HTML views (112)
  • Cited by (0)

Other articles
by authors

[Back to Top]