-
Previous Article
Mean-field limit of a spatially-extended FitzHugh-Nagumo neural network
- KRM Home
- This Issue
-
Next Article
Large amplitude stationary solutions of the Morrow model of gas ionization
Focusing solutions of the Vlasov-Poisson system
Department of Mathematics, Brown University, 151 Thayer Street, Providence, RI 02912, USA |
We study smooth, spherically-symmetric solutions to the Vlasov-Poisson system and relativistic Vlasov-Poisson system in the plasma physical case. We construct solutions that initially possess arbitrarily small $ C^k $ norms ($ k \geq 1 $) for the charge densities and the electric fields, but attain arbitrarily large $ L^\infty $ norms of them at some later time.
References:
[1] |
J. Ben-Artzi, S. Calogero and S. Pankavich,
Arbitrarily large solutions of the Vlasov-Poisson system, SIAM Journal on Mathematical Analysis, 50 (2018), 4311-4326.
doi: 10.1137/17M1142715. |
[2] |
J. Ben-Artzi, S. Calogero and S. Pankavich, Concentrating solutions of the relativistic Vlasov-Maxwell system, Commun. Math. Sci., 17 (2019), 377–392, arXiv: 1807.02801.
doi: 10.4310/CMS.2019.v17.n2.a4. |
[3] | J. P. Friedberg, Ideal Magnetohydrodynamics, Plenum Press, New York, 1987. Google Scholar |
[4] |
R. T. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996.
doi: 10.1137/1.9781611971477. |
[5] |
R. Glassey, S. Pankavich and J. Schaeffer,
Decay in time for a one-dimensional two-component plasma, Math. Methods Appl. Sci., 31 (2008), 2115-2132.
doi: 10.1002/mma.1015. |
[6] |
R. Glassey, S. Pankavich and J. Schaeffer,
On long-time behavior of monocharged and neutral plasma in one and one-half dimensions, Kinetic and Related Models, 2 (2009), 465-488.
doi: 10.3934/krm.2009.2.465. |
[7] |
R. Glassey, S. Pankavich and J. Schaeffer,
Large time behavior of the relativistic Vlasov-Maxwell system in low space dimension, Differential and Integral Equations, 23 (2010), 61-77.
|
[8] |
R. Glassey, S. Pankavich and J. Schaeffer,
Time decay for solutions to one-dimensional two component plasma equations, Quarterly of Applied Mathematics, 68 (2010), 135-141.
doi: 10.1090/S0033-569X-09-01143-4. |
[9] |
R. T. Glassey and J. Schaeffer,
On symmetric solutions of the relativistic Vlasov-Poisson system, Comm. Math. Phys., 101 (1985), 459-473.
doi: 10.1007/BF01210740. |
[10] |
E. Horst,
Symmetric plasmas and their decay, Comm. Math. Phys., 126 (1990), 613-633.
doi: 10.1007/BF02125703. |
[11] |
R. Illner and G. Rein,
Time decay of the solutions of the Vlasov-Poisson system in the plasma physical case, Math. Methods Appl. Sci., 19 (1996), 1409-1413.
doi: 10.1002/(SICI)1099-1476(19961125)19:17<1409::AID-MMA836>3.0.CO;2-2. |
[12] |
P.-L. Lions and B. Perthame,
Propogation of moments and regularity for the three dimensional Vlasov-Poisson system, Invent. Math., 105 (1991), 415-430.
doi: 10.1007/BF01232273. |
[13] |
D. R. Nicholson, Introduction to Plasma Theory, Wiley, New York, 1983. Google Scholar |
[14] |
K. Pfaffelmoser,
Global classical solution of the Vlasov-Poisson system in three dimensions for general initial data, J. Diff. Eq., 95 (1992), 281-303.
doi: 10.1016/0022-0396(92)90033-J. |
[15] |
G. Rein and L. Taegert,
Gravitational collapse and the Vlasov-Poisson system, Annales Henri Poincaré, 17 (2016), 1415-1427.
doi: 10.1007/s00023-015-0424-y. |
show all references
References:
[1] |
J. Ben-Artzi, S. Calogero and S. Pankavich,
Arbitrarily large solutions of the Vlasov-Poisson system, SIAM Journal on Mathematical Analysis, 50 (2018), 4311-4326.
doi: 10.1137/17M1142715. |
[2] |
J. Ben-Artzi, S. Calogero and S. Pankavich, Concentrating solutions of the relativistic Vlasov-Maxwell system, Commun. Math. Sci., 17 (2019), 377–392, arXiv: 1807.02801.
doi: 10.4310/CMS.2019.v17.n2.a4. |
[3] | J. P. Friedberg, Ideal Magnetohydrodynamics, Plenum Press, New York, 1987. Google Scholar |
[4] |
R. T. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996.
doi: 10.1137/1.9781611971477. |
[5] |
R. Glassey, S. Pankavich and J. Schaeffer,
Decay in time for a one-dimensional two-component plasma, Math. Methods Appl. Sci., 31 (2008), 2115-2132.
doi: 10.1002/mma.1015. |
[6] |
R. Glassey, S. Pankavich and J. Schaeffer,
On long-time behavior of monocharged and neutral plasma in one and one-half dimensions, Kinetic and Related Models, 2 (2009), 465-488.
doi: 10.3934/krm.2009.2.465. |
[7] |
R. Glassey, S. Pankavich and J. Schaeffer,
Large time behavior of the relativistic Vlasov-Maxwell system in low space dimension, Differential and Integral Equations, 23 (2010), 61-77.
|
[8] |
R. Glassey, S. Pankavich and J. Schaeffer,
Time decay for solutions to one-dimensional two component plasma equations, Quarterly of Applied Mathematics, 68 (2010), 135-141.
doi: 10.1090/S0033-569X-09-01143-4. |
[9] |
R. T. Glassey and J. Schaeffer,
On symmetric solutions of the relativistic Vlasov-Poisson system, Comm. Math. Phys., 101 (1985), 459-473.
doi: 10.1007/BF01210740. |
[10] |
E. Horst,
Symmetric plasmas and their decay, Comm. Math. Phys., 126 (1990), 613-633.
doi: 10.1007/BF02125703. |
[11] |
R. Illner and G. Rein,
Time decay of the solutions of the Vlasov-Poisson system in the plasma physical case, Math. Methods Appl. Sci., 19 (1996), 1409-1413.
doi: 10.1002/(SICI)1099-1476(19961125)19:17<1409::AID-MMA836>3.0.CO;2-2. |
[12] |
P.-L. Lions and B. Perthame,
Propogation of moments and regularity for the three dimensional Vlasov-Poisson system, Invent. Math., 105 (1991), 415-430.
doi: 10.1007/BF01232273. |
[13] |
D. R. Nicholson, Introduction to Plasma Theory, Wiley, New York, 1983. Google Scholar |
[14] |
K. Pfaffelmoser,
Global classical solution of the Vlasov-Poisson system in three dimensions for general initial data, J. Diff. Eq., 95 (1992), 281-303.
doi: 10.1016/0022-0396(92)90033-J. |
[15] |
G. Rein and L. Taegert,
Gravitational collapse and the Vlasov-Poisson system, Annales Henri Poincaré, 17 (2016), 1415-1427.
doi: 10.1007/s00023-015-0424-y. |
[1] |
Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361 |
[2] |
Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic & Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129 |
[3] |
Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034 |
[4] |
Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71 |
[5] |
Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089 |
[6] |
Frank Merle, Hatem Zaag. O.D.E. type behavior of blow-up solutions of nonlinear heat equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 435-450. doi: 10.3934/dcds.2002.8.435 |
[7] |
Joackim Bernier, Michel Mehrenberger. Long-time behavior of second order linearized Vlasov-Poisson equations near a homogeneous equilibrium. Kinetic & Related Models, 2020, 13 (1) : 129-168. doi: 10.3934/krm.2020005 |
[8] |
Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119 |
[9] |
Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225 |
[10] |
Frédéric Abergel, Jean-Michel Rakotoson. Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1809-1818. doi: 10.3934/dcds.2013.33.1809 |
[11] |
Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1 |
[12] |
Pablo Álvarez-Caudevilla, Jonathan D. Evans, Victor A. Galaktionov. Gradient blow-up for a fourth-order quasilinear Boussinesq-type equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3913-3938. doi: 10.3934/dcds.2018170 |
[13] |
Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085 |
[14] |
Jens Lorenz, Wilberclay G. Melo, Natã Firmino Rocha. The Magneto–Hydrodynamic equations: Local theory and blow-up of solutions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3819-3841. doi: 10.3934/dcdsb.2018332 |
[15] |
Qiong Chen, Chunlai Mu, Zhaoyin Xiang. Blow-up and asymptotic behavior of solutions to a semilinear integrodifferential system. Communications on Pure & Applied Analysis, 2006, 5 (3) : 435-446. doi: 10.3934/cpaa.2006.5.435 |
[16] |
Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020052 |
[17] |
Blanca Ayuso, José A. Carrillo, Chi-Wang Shu. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic & Related Models, 2011, 4 (4) : 955-989. doi: 10.3934/krm.2011.4.955 |
[18] |
Silvia Caprino, Guido Cavallaro, Carlo Marchioro. Time evolution of a Vlasov-Poisson plasma with magnetic confinement. Kinetic & Related Models, 2012, 5 (4) : 729-742. doi: 10.3934/krm.2012.5.729 |
[19] |
Gang Li, Xianwen Zhang. A Vlasov-Poisson plasma of infinite mass with a point charge. Kinetic & Related Models, 2018, 11 (2) : 303-336. doi: 10.3934/krm.2018015 |
[20] |
Gianluca Crippa, Silvia Ligabue, Chiara Saffirio. Lagrangian solutions to the Vlasov-Poisson system with a point charge. Kinetic & Related Models, 2018, 11 (6) : 1277-1299. doi: 10.3934/krm.2018050 |
2018 Impact Factor: 1.38
Tools
Metrics
Other articles
by authors
[Back to Top]