[1]
|
X. Antoine, A. Arnold, C. Besse, M. Ehrhardt and A. Schädle, A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations, Commun. Comput. Phys., 4 (2008), 729-796.
|
[2]
|
B. Boutin and J.-F. Coulombel, Stability of finite difference schemes for hyperbolic initial boundary value problems: Numerical boundary layers, Numer. Math. Theory Methods Appl., 10 (2017), 489-519.
doi: 10.4208/nmtma.2017.m1525.
|
[3]
|
C. Chainais-Hillairet and E. Grenier, Numerical boundary layers for hyperbolic systems in 1-D, M2AN Math. Model. Numer. Anal., 35 (2001), 91-106.
doi: 10.1051/m2an:2001100.
|
[4]
|
J.-F. Coulombel, Stability of finite difference schemes for hyperbolic initial boundary value problems, in HCDTE Lecture Notes. Part Ⅰ. Nonlinear Hyperbolic PDEs, Dispersive and Transport Equations, American Institute of Mathematical Sciences, 6 (2013), 146pp.
|
[5]
|
J.-F. Coulombel, Transparent numerical boundary conditions for evolution equations: Derivation and stability analysis, Ann. Fac. Sci. Toulouse Math. (6), 28 (2019), 259-327.
doi: 10.5802/afst.1600.
|
[6]
|
J.-F. Coulombel and A. Gloria, Semigroup stability of finite difference schemes for multidimensional hyperbolic initial boundary value problems, Math. Comp., 80 (2011), 165-203.
doi: 10.1090/S0025-5718-10-02368-9.
|
[7]
|
R. Courant, K. Friedrichs and H. Lewy, Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann., 100 (1928), 32-74.
doi: 10.1007/BF01448839.
|
[8]
|
R. Dautray and J.-L. Lions, Analyse Mathématique et Calcul Numérique Pour les Sciences et les Techniques. Tome 3, Collection du Commissariat à l'Énergie Atomique: Série Scientifique., Masson, Paris, 1985.
|
[9]
|
B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31 (1977), 629-651.
doi: 10.1090/S0025-5718-1977-0436612-4.
|
[10]
|
M. Goldberg, On a boundary extrapolation theorem by Kreiss, Math. Comp., 31 (1977), 469-477.
doi: 10.1090/S0025-5718-1977-0443363-9.
|
[11]
|
M. Goldberg and E. Tadmor, Scheme-independent stability criteria for difference approximations of hyperbolic initial-boundary value problems. Ⅰ, Math. Comp., 32 (1978), 1097-1107.
doi: 10.1090/S0025-5718-1978-0501998-X.
|
[12]
|
M. Goldberg and E. Tadmor, Scheme-independent stability criteria for difference approximations of hyperbolic initial-boundary value problems. Ⅱ, Math. Comp., 36 (1981), 603-626.
doi: 10.1090/S0025-5718-1981-0606519-9.
|
[13]
|
B. Gustafsson, The convergence rate for difference approximations to mixed initial boundary value problems, Math. Comp., 29 (1975), 396-406.
doi: 10.1090/S0025-5718-1975-0386296-7.
|
[14]
|
B. Gustafsson, H.-O. Kreiss and J. Oliger, Time Dependent Problems and Difference Methods, John Wiley & Sons, 1995.
|
[15]
|
B. Gustafsson, H.-O. Kreiss and A. Sundström, Stability theory of difference approximations for mixed initial boundary value problems. Ⅱ, Math. Comp., 26 (1972), 649-686.
doi: 10.1090/S0025-5718-1972-0341888-3.
|
[16]
|
T. Hagstrom, Radiation boundary conditions for the numerical simulation of waves, in Acta Numerica, 1999, vol. 8 of Acta Numer., Cambridge Univ. Press, 1999, 47–106.
doi: 10.1017/S0962492900002890.
|
[17]
|
L. Halpern, Absorbing boundary conditions for the discretization schemes of the one-dimensional wave equation, Math. Comp., 38 (1982), 415-429.
doi: 10.1090/S0025-5718-1982-0645659-6.
|
[18]
|
G. W. Hedstrom, Norms of powers of absolutely convergent Fourier series, Michigan Math. J., 13 (1966), 393-416.
doi: 10.1307/mmj/1028999598.
|
[19]
|
R. L. Higdon, Absorbing boundary conditions for difference approximations to the multidimensional wave equation, Math. Comp., 47 (1986), 437-459.
doi: 10.2307/2008166.
|
[20]
|
R. L. Higdon, Radiation boundary conditions for dispersive waves, SIAM J. Numer. Anal., 31 (1994), 64-100.
doi: 10.1137/0731004.
|
[21]
|
H.-O. Kreiss, Difference approximations for hyperbolic differential equations, in Numerical
Solution of Partial Differential Equations (Proc. Sympos. Univ. Maryland, 1965), Academic
Press, 1966, 51–58.
|
[22]
|
H.-O. Kreiss, Stability theory for difference approximations of mixed initial boundary value problems. Ⅰ, Math. Comp., 22 (1968), 703-714.
doi: 10.1090/S0025-5718-1968-0241010-7.
|
[23]
|
H.-O. Kreiss and E. Lundqvist, On difference approximations with wrong boundary values, Math. Comp., 22 (1968), 1-12.
doi: 10.1090/S0025-5718-1968-0228193-X.
|
[24]
|
S. Osher, Systems of difference equations with general homogeneous boundary conditions, Trans. Amer. Math. Soc., 137 (1969), 177-201.
doi: 10.1090/S0002-9947-1969-0237982-4.
|
[25]
|
G. Strang, Trigonometric polynomials and difference methods of maximum accuracy, J. Math. Phys., 41 (1962), 147-154.
doi: 10.1002/sapm1962411147.
|
[26]
|
J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, Society for Industrial and Applied Mathematics (SIAM), 2004.
doi: 10.1137/1.9780898717938.
|
[27]
|
V. Thomée, Stability of difference schemes in the maximum-norm, J. Differential Equations, 1 (1965), 273-292.
doi: 10.1016/0022-0396(65)90008-2.
|
[28]
|
L. N. Trefethen, Instability of difference models for hyperbolic initial-boundary value problems, Comm. Pure Appl. Math., 37 (1984), 329-367.
doi: 10.1002/cpa.3160370305.
|
[29]
|
L. N. Trefethen and M. Embree, Spectra and Pseudospectra, Princeton University Press, 2005,
The behavior of nonnormal matrices and operators.
|
[30]
|
L. Wu, The semigroup stability of the difference approximations for initial-boundary value problems, Math. Comp., 64 (1995), 71-88.
doi: 10.2307/2153323.
|