February  2020, 13(1): 129-168. doi: 10.3934/krm.2020005

Long-time behavior of second order linearized Vlasov-Poisson equations near a homogeneous equilibrium

1. 

Univ Rennes, INRIA, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France

2. 

Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France

* Corresponding author: Joackim Bernier

Received  March 2019 Revised  September 2019 Published  December 2019

Fund Project: This work was granted access to the HPC resources of Aix-Marseille Université financed by the project Equip@Meso (ANR-10-EQPX-29-01) of the program "Investissements d'Avenir"? supervised by the Agence Nationale de la Recherche. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

The asymptotic behavior of the solutions of the second order linearized Vlasov-Poisson system around homogeneous equilibria is derived. It provides a fine description of some nonlinear and multidimensional phenomena such as the existence of Best frequencies. Numerical results for the $ 1D\times1D $ and $ 2D\times2D $ Vlasov-Poisson system illustrate the effectiveness of this approach.

Citation: Joackim Bernier, Michel Mehrenberger. Long-time behavior of second order linearized Vlasov-Poisson equations near a homogeneous equilibrium. Kinetic & Related Models, 2020, 13 (1) : 129-168. doi: 10.3934/krm.2020005
References:
[1]

W. Arendt, C. J. K. Batty and M. Hieber, Vector-valued Laplace Transforms and Cauchy Problems, 2nd edition, Birkhäuser/Springer Basel AG, Basel, 2011. doi: 10.1007/978-3-0348-0087-7.  Google Scholar

[2]

M. Badsi and M. Herda, Modelling and simulating a multispecies plasma, ESAIM: ProcS, 53 (2016), 22-37.  doi: 10.1051/proc/201653002.  Google Scholar

[3]

J. Barré and Y. Y. Yamaguchi, On algebraic damping close to inhomogeneous Vlasov equilibria in multi-dimensional spaces, J. Phys. A, 46 (2013), 225501, 19 pp. doi: 10.1088/1751-8113/46/22/225501.  Google Scholar

[4]

Y. BarsamianJ. BernierS. Hirstoaga and M. Mehrenberger, Verification of 2D 2D and Two-Species Vlasov-Poisson Solvers, ESAIM: ProcS, 63 (2018), 78-108.  doi: 10.1051/proc/201863078.  Google Scholar

[5]

J. Bedrossian, N. Masmoudi and C. Mouhot, Landau damping: Paraproducts and Gevrey regularity, Ann. PDE, 2 (2016), Art. 4, 71pp. doi: 10.1007/s40818-016-0008-2.  Google Scholar

[6]

F. CasasN. CrouseillesE. Faou and M. Mehrenberger, High-order Hamiltonian splitting for the Vlasov-Poisson equations, Numer. Math., 135 (2017), 769-801.  doi: 10.1007/s00211-016-0816-z.  Google Scholar

[7]

P. Degond, Spectral theory of the linearized Vlasov-Poisson equation, Trans. Amer. Math. Soc., 294 (1986), 435-453.  doi: 10.1090/S0002-9947-1986-0825714-8.  Google Scholar

[8]

J. Denavit, First and second order landau damping in maxwellian plasmas, Physics of Fluids, 8 (1965), 471-478.  doi: 10.1063/1.1761247.  Google Scholar

[9]

R. Horsin, Comportement en Temps Long D'équations de Type Vlasov: Études Mathématiques et Numériques, Ph.D thesis, Université Rennes 1, 2017. Google Scholar

[10]

L. Landau, On the vibrations of the electronic plasma, J. Phys. (USSR), 10 (1946), 25-34.  doi: 10.1016/B978-0-08-010586-4.50066-3.  Google Scholar

[11]

C. Mouhot and C. Villani, On Landau damping, Acta Math., 207 (2011), 29-201.  doi: 10.1007/s11511-011-0068-9.  Google Scholar

[12]

F. Nicola and L. Rodino, Global Pseudo-differential Calculus on Euclidean Spaces, Birkhäuser Verlag, Basel, 2010. doi: 10.1007/978-3-7643-8512-5.  Google Scholar

[13]

Z. Sedláček and L. Nocera, Second-order oscillations of a Vlasov-Poisson plasma in Fourier-transformed velocity space, Journal of Plasma Physics, 48 (1992), 367-389.  doi: 10.1017/S0022377800016639.  Google Scholar

[14]

M. M. Shoucri and R. R. Gagné, A Multistep Technique for the Numerical Solution of a Two-Dimensional Vlasov Equation, Journal of Computational Physics, 23 (1977), 243–262. doi: 10.1016/0021-9991(77)90093-6.  Google Scholar

[15]

E. Sonnendrücker, Numerical Methods for the Vlasov-Maxwell Equations, book in preparation, version of february, 2015. Google Scholar

show all references

References:
[1]

W. Arendt, C. J. K. Batty and M. Hieber, Vector-valued Laplace Transforms and Cauchy Problems, 2nd edition, Birkhäuser/Springer Basel AG, Basel, 2011. doi: 10.1007/978-3-0348-0087-7.  Google Scholar

[2]

M. Badsi and M. Herda, Modelling and simulating a multispecies plasma, ESAIM: ProcS, 53 (2016), 22-37.  doi: 10.1051/proc/201653002.  Google Scholar

[3]

J. Barré and Y. Y. Yamaguchi, On algebraic damping close to inhomogeneous Vlasov equilibria in multi-dimensional spaces, J. Phys. A, 46 (2013), 225501, 19 pp. doi: 10.1088/1751-8113/46/22/225501.  Google Scholar

[4]

Y. BarsamianJ. BernierS. Hirstoaga and M. Mehrenberger, Verification of 2D 2D and Two-Species Vlasov-Poisson Solvers, ESAIM: ProcS, 63 (2018), 78-108.  doi: 10.1051/proc/201863078.  Google Scholar

[5]

J. Bedrossian, N. Masmoudi and C. Mouhot, Landau damping: Paraproducts and Gevrey regularity, Ann. PDE, 2 (2016), Art. 4, 71pp. doi: 10.1007/s40818-016-0008-2.  Google Scholar

[6]

F. CasasN. CrouseillesE. Faou and M. Mehrenberger, High-order Hamiltonian splitting for the Vlasov-Poisson equations, Numer. Math., 135 (2017), 769-801.  doi: 10.1007/s00211-016-0816-z.  Google Scholar

[7]

P. Degond, Spectral theory of the linearized Vlasov-Poisson equation, Trans. Amer. Math. Soc., 294 (1986), 435-453.  doi: 10.1090/S0002-9947-1986-0825714-8.  Google Scholar

[8]

J. Denavit, First and second order landau damping in maxwellian plasmas, Physics of Fluids, 8 (1965), 471-478.  doi: 10.1063/1.1761247.  Google Scholar

[9]

R. Horsin, Comportement en Temps Long D'équations de Type Vlasov: Études Mathématiques et Numériques, Ph.D thesis, Université Rennes 1, 2017. Google Scholar

[10]

L. Landau, On the vibrations of the electronic plasma, J. Phys. (USSR), 10 (1946), 25-34.  doi: 10.1016/B978-0-08-010586-4.50066-3.  Google Scholar

[11]

C. Mouhot and C. Villani, On Landau damping, Acta Math., 207 (2011), 29-201.  doi: 10.1007/s11511-011-0068-9.  Google Scholar

[12]

F. Nicola and L. Rodino, Global Pseudo-differential Calculus on Euclidean Spaces, Birkhäuser Verlag, Basel, 2010. doi: 10.1007/978-3-7643-8512-5.  Google Scholar

[13]

Z. Sedláček and L. Nocera, Second-order oscillations of a Vlasov-Poisson plasma in Fourier-transformed velocity space, Journal of Plasma Physics, 48 (1992), 367-389.  doi: 10.1017/S0022377800016639.  Google Scholar

[14]

M. M. Shoucri and R. R. Gagné, A Multistep Technique for the Numerical Solution of a Two-Dimensional Vlasov Equation, Journal of Computational Physics, 23 (1977), 243–262. doi: 10.1016/0021-9991(77)90093-6.  Google Scholar

[15]

E. Sonnendrücker, Numerical Methods for the Vlasov-Maxwell Equations, book in preparation, version of february, 2015. Google Scholar

Figure 1.  An illustration of the geometrical constructions introduced in the proof of Lemma 3.3
Figure 2.  Time evolution of $ |\Re(\widehat{E}_{1,num})(t)| $ (mode 1), $ |\Re\left(\widehat{E}_{1,num}(t)- ze^{-i\omega_1t}\right)| $ (mode 1 - leading mode 1) and $ |\Re\left((z_1+t_jz_2)e^{-i\omega_b t_j}\right)| $ (Best), for coarse $ 128\times256\times0.1 $ and refined $ 2048\times4096\times0.00625 $ grids, the latter being referred as (ref) in the legend. The parameters $ [t_{\min},t_{\max}] = [17.5,35] $ and $ [\tilde{t}_{\min},\tilde{t}_{\max}] = [1.75,17.5] $ are used for the least square procedures
Figure 3.  Time evolution of
$ |\Re(\varepsilon^{-2}\widehat{E}_{1,num})(t)| $ (simu) vs $ |z_1e^{-i\omega_{0.9}t}| $ (approx1),
$ |\Re\left(\varepsilon^{-2}\widehat{E}_{1,num}(t)- z_1e^{-i\omega_{0.9}t}\right)| $ (simu1) vs $ |\Re\left((z_2t+z_3)e^{-i0.9\omega_1t}\right)| $ (approx2),
$ |\Re\left(\varepsilon^{-2}\widehat{E}_{1,num}(t)- z_1e^{-i\omega_{0.9}t}-(z_2t+z_3)e^{-i0.9\omega_1t}\right)| $ (simu2) vs $ |\Re\left(z_4e^{-i(\omega_{1}+\omega_{0.1,-})t}+z_5e^{-i(\omega_{1}+\omega_{0.1,+})t}\right)| $ (approx3),
for coarse (top) $ 128\times256\times0.1 $ and refined (bottom) $ 2048\times4096\times0.00625 $ grids. The parameters for the least square procedure is $ [t_{\min},t_{\max}] = [0,30] $ for the coarse grid and $ [t_{\min},t_{\max}] = [0,35] $ for the refined grid.
Figure 4.  A 2D-case with Best frequency: time evolution of
$ |\Re(\varepsilon^{-2}\widehat{\rho}_{1,1,num})(t)| $ (simu)
$ |\Re\left(z_1e^{-i\omega_{\sqrt{2}/10}t}+(z_2t+z_3)e^{-i\frac{1}{3}\omega_{3\sqrt{2}/10}t}\right)| $ (approx)
$ 10^{-3}|\Re\left(z_1e^{-i\omega_{\sqrt{2}/10}t}\right)| $ (main mode /1e3)
$ 10^{-3}|\Re\left((z_2t+z_3)e^{-i\frac{1}{3}\omega_{3\sqrt{2}/10}t}\right)| $ (Best mode /1e3)
The parameters $ \lambda = 0.09 $ and $ [t_{\min},t_{\max}] = [0,60] $ are used for the least square procedure to fit (simu) by (approx) and leads to $ z_1\simeq 0.036159+0.042602i $, $ z_2\simeq -0.0031761-0.00089598i $ and $ z_3\simeq 0.010351-0.046355i $.
Figure 5.  A 2D-case without Best frequency: time evolution of
$ |\Re(\varepsilon^{-2}\widehat{\rho}_{1,1,num})(t)| $ (simu)
$ |\Re\left(z_1e^{-i\omega_{\sqrt{2}/10}t}\right)| $ (first approx)
$ |\Re\left(\varepsilon^{-2}\widehat{\rho}_{1,1,num}(t)-z_1e^{-i\omega_{\sqrt{2}/10}t}\right)| $ (simu - first approx)
$ |\Re\left(z_2e^{-i(\omega_{\sqrt{5}/10,+}+\omega_{\sqrt{13}/10,-})t}+z_3e^{-i(\omega_{\sqrt{5}/10,+}+\omega_{\sqrt{13}/10,+})t}\right)| $ (approx2)
The parameters $ \lambda = 0.05 $ and $ [t_{\min},t_{\max}] = [0,240] $ are used for the least square procedure leads to $ z_1\simeq 0.052836+0.049810i $, $ z_2\simeq -0.032921-0.0010657i $ and $ z_3\simeq -0.013703-0.0050901i $.
[1]

Meixia Xiao, Xianwen Zhang. On global solutions to the Vlasov-Poisson system with radiation damping. Kinetic & Related Models, 2018, 11 (5) : 1183-1209. doi: 10.3934/krm.2018046

[2]

Miroslav Grmela, Michal Pavelka. Landau damping in the multiscale Vlasov theory. Kinetic & Related Models, 2018, 11 (3) : 521-545. doi: 10.3934/krm.2018023

[3]

Katherine Zhiyuan Zhang. Focusing solutions of the Vlasov-Poisson system. Kinetic & Related Models, 2019, 12 (6) : 1313-1327. doi: 10.3934/krm.2019051

[4]

Blanca Ayuso, José A. Carrillo, Chi-Wang Shu. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic & Related Models, 2011, 4 (4) : 955-989. doi: 10.3934/krm.2011.4.955

[5]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. Time evolution of a Vlasov-Poisson plasma with magnetic confinement. Kinetic & Related Models, 2012, 5 (4) : 729-742. doi: 10.3934/krm.2012.5.729

[6]

Gang Li, Xianwen Zhang. A Vlasov-Poisson plasma of infinite mass with a point charge. Kinetic & Related Models, 2018, 11 (2) : 303-336. doi: 10.3934/krm.2018015

[7]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic & Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129

[8]

Gianluca Crippa, Silvia Ligabue, Chiara Saffirio. Lagrangian solutions to the Vlasov-Poisson system with a point charge. Kinetic & Related Models, 2018, 11 (6) : 1277-1299. doi: 10.3934/krm.2018050

[9]

Zili Chen, Xiuting Li, Xianwen Zhang. The two dimensional Vlasov-Poisson system with steady spatial asymptotics. Kinetic & Related Models, 2017, 10 (4) : 977-1009. doi: 10.3934/krm.2017039

[10]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[11]

Gerhard Rein, Christopher Straub. On the transport operators arising from linearizing the Vlasov-Poisson or Einstein-Vlasov system about isotropic steady states. Kinetic & Related Models, 2020, 13 (5) : 933-949. doi: 10.3934/krm.2020032

[12]

Yemin Chen. Smoothness of classical solutions to the Vlasov-Poisson-Landau system. Kinetic & Related Models, 2008, 1 (3) : 369-386. doi: 10.3934/krm.2008.1.369

[13]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. A Vlasov-Poisson plasma with unbounded mass and velocities confined in a cylinder by a magnetic mirror. Kinetic & Related Models, 2016, 9 (4) : 657-686. doi: 10.3934/krm.2016011

[14]

Hyung Ju Hwang, Jaewoo Jung, Juan J. L. Velázquez. On global existence of classical solutions for the Vlasov-Poisson system in convex bounded domains. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 723-737. doi: 10.3934/dcds.2013.33.723

[15]

Francis Filbet, Roland Duclous, Bruno Dubroca. Analysis of a high order finite volume scheme for the 1D Vlasov-Poisson system. Discrete & Continuous Dynamical Systems - S, 2012, 5 (2) : 283-305. doi: 10.3934/dcdss.2012.5.283

[16]

Dongming Wei. 1D Vlasov-Poisson equations with electron sheet initial data. Kinetic & Related Models, 2010, 3 (4) : 729-754. doi: 10.3934/krm.2010.3.729

[17]

Mihaï Bostan. Asymptotic behavior for the Vlasov-Poisson equations with strong uniform magnetic field and general initial conditions. Kinetic & Related Models, 2020, 13 (3) : 531-548. doi: 10.3934/krm.2020018

[18]

Trinh T. Nguyen. Derivative estimates for screened Vlasov-Poisson system around Penrose-stable equilibria. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020043

[19]

Christophe Cheverry, Adrien Fontaine. Dispersion relations in cold magnetized plasmas. Kinetic & Related Models, 2017, 10 (2) : 373-421. doi: 10.3934/krm.2017015

[20]

Yuanjie Lei, Linjie Xiong, Huijiang Zhao. One-species Vlasov-Poisson-Landau system near Maxwellians in the whole space. Kinetic & Related Models, 2014, 7 (3) : 551-590. doi: 10.3934/krm.2014.7.551

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (94)
  • HTML views (76)
  • Cited by (0)

Other articles
by authors

[Back to Top]