\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global analytic solutions of the semiconductor Boltzmann-Dirac-Benney equation with relaxation time approximation

The author was partially funded by the Austrian Science Fund (FWF) project F 65

Abstract Full Text(HTML) Related Papers Cited by
  • The semiconductor Boltzmann-Dirac-Benney equation

    $ \partial_t f + \nabla\epsilon(p)\cdot\nabla_x f - \nabla \rho_f(x,t)\cdot\nabla_p f = \frac{\mathcal F_\lambda(p)-f}\tau, \quad x\in\mathbb{R}^d,\ p\in B, \ t>0 $

    is a model for ultracold atoms trapped in an optical lattice. The global existence of a solution is shown for small $ \tau>0 $ assuming that the initial data are analytic and sufficiently close to the Fermi-Dirac distribution $ \mathcal F_\lambda $. This system contains an interaction potential $ \rho_f: = \int_B fdp $ being significantly more singular than the Coulomb potential, which causes major structural difficulties in the analysis.

    The key technique is based of the ideas of Mouhot and Villani by using Gevrey-type norms which vary over time. The global existence result for small initial data is also generalized to

    $ \partial_t f + Lf = Q(f), $

    where $ L $ is a generator of an $ C^0 $-group with $ \|e^{tL}\|\leq Ce^{\omega t} $ for all $ t\in\mathbb R $ and $ \omega>0 $ and, where further additional analytic properties of $ L $ and $ Q $ are assumed.

    Mathematics Subject Classification: Primary: 35F25, 35F20, 35Q20; Secondary: 35Q83.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] N. W. Ashcroft and N. D. Mermin, Solid state physics, Physics Today, 30 (1977), P61.  doi: 10.1063/1.3037370.
    [2] A. Al-Masoudi, S. Dörscher, S. Häfner, U. Sterr and C. Lisdat, Noise and instability of an optical lattice clock, Phys. Rev. A, 92 (2015), 063814, 7 pages. doi: 10.1103/PhysRevA.92.063814.
    [3] N. B. Abdallah and P. Degond, On a hierarchy of macroscopic models for semiconductors, J. Math. Phys., 37 (1996), 3306-3333.  doi: 10.1063/1.531567.
    [4] E. Bloch, Ultracold quantum gases in optical lattices, Nature Physics, 1 (2005), 23-30.  doi: 10.1038/nphys138.
    [5] M. Braukhoff, Effective Equations for a Cloud of Ultracold Atoms in an Optical Lattice, Ph.D thesis, University of Cologne, Germany, 2017.
    [6] M. Braukhoff, Semiconductor Boltzmann-Dirac-Benney equation with a BGK-type collision operator: Existence of solutions vs. ill-posedness, Kinet. Relat. Models, 12 (2019), 445–482, arXiv 1711.06015 [math.AP]. doi: 10.3934/krm.2019019.
    [7] M. Braukhoff and A. Jüngel, Energy-transport systems for optical lattices: Derivation, analysis, simulation, Mathematical Models and Methods in Applied Sciences, 28 (2018), 579-614.  doi: 10.1142/S021820251850015X.
    [8] C. Bardos and N. Besse, The Cauchy problem for the Vlasov-Dirac-Benney equation and related issues in fluid mechanics and semi-classical limits,, Kinet. Relat. Models, 6 (2013), 893-917.  doi: 10.3934/krm.2013.6.893.
    [9] C. Bardos and N. Besse, Hamiltonian structure, fluid representation and stability for the Vlasov-Dirac-benney equation, In Hamiltonian Partial Differential Equations and Applications, 1–30, Fields Inst. Commun., 75, Fields Inst. Res. Math. Sci., Toronto, ON, 2015. doi: 10.1007/978-1-4939-2950-4_1.
    [10] C. Bardos and N. Besse, Semi-classical limit of an infinite dimensional system of nonlinear Schrödinger equations,, Bull. Inst. Math., Acad. Sin. (N.S.), 11 (2016), 43-61. 
    [11] C. Bardos and A. Nouri, A Vlasov equation with Dirac potential used in fusion plasmas, J. Math. Phys., 53 (2012), 115621, 16pp. doi: 10.1063/1.4765338.
    [12] O. Dutta, M. Gajda, P. Hauke, M. Lewenstein, D.-S. Lühmann, B. Malomed, T. Sowinski and J. Zakrzewski, Non-standard Hubbard models in optical lattices: A review, Rep. Prog. Phys., 78 (2015), 066001, 47 pages. doi: 10.1088/0034-4885/78/6/066001.
    [13] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, Springer, 2000.
    [14] D. Han-Kwan and T. T. Nguyen, Ill-posedness of the hydrostatic Euler and singular Vlasov equations, Arch. Rational Mech. Anal., 221 (2016), 1317-1344.  doi: 10.1007/s00205-016-0985-z.
    [15] D. Han-Kwan and F. Rousset, Quasineutral limit for Vlasov-Poisson with Penrose stable data, Ann. Sci. cole Norm. Sup., 49 (2016), 1445-1495.  doi: 10.24033/asens.2313.
    [16] P.-E. Jabin and A. Nouri, Analytic solutions to a strongly nonlinear Vlasov equation,, C. R., Math., Acad. Sci. Paris, 349 (2011), 541-546.  doi: 10.1016/j.crma.2011.03.024.
    [17] A. Jaksch, Optical lattices, ultracold atoms and quantum information processing, Contemp. Phys., 45 (2004), 367-381.  doi: 10.1080/00107510410001705486.
    [18] A. Jüngel, Transport Equations for Semiconductors, Lecture Notes in Physics, 773. Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-89526-8.
    [19] T. Kato, Perturbation Theory for Linear Operators, Die Grundlehren der mathematischen Wissenschaften, Band 132 Springer-Verlag New York, Inc., New York, 1966.
    [20] S. Mandt, Transport and Non-Equilibrium Dynamics in Optical Lattices. From Expanding Atomic Clouds to Negative Absolute Temperatures, PhD thesis, University of Cologne, 2012.
    [21] G. Metivier, Remarks on the well-posedness of the nonlinear Cauchy problem, Geometric Analysis of PDE and Several Complex Variables, 337–356, Contemp. Math., 368, Amer. Math. Soc., Providence, RI, 2005. doi: 10.1090/conm/368/06790.
    [22] C. Mouhot and C. Villani, On Landau damping,, Acta Math., 207 (2011), 29-201.  doi: 10.1007/s11511-011-0068-9.
    [23] N. Ramsey, Thermodynamics and statistical mechanics at negative absolute temperature, Phys. Rev., 103 (1956), 20-28.  doi: 10.1103/PhysRev.103.20.
    [24] A. Rapp, S. Mandt and A. Rosch, Equilibration rates and negative absolute temperatures for ultracold atoms in optical lattices, Phys. Rev. Lett., 105 (2010), 220405, 4 pages. doi: 10.1103/PhysRevLett.105.220405.
    [25] U. SchneiderL. HackermüllerJ. Ph. RonzheimerS. WillS. BraunT. BestI. BlochE. DemlerS. MandtD. Rasch and A. Rosch, Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms, Nature Physics, 8 (2012), 213-218.  doi: 10.1038/nphys2205.
  • 加载中
SHARE

Article Metrics

HTML views(202) PDF downloads(202) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return