\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On Fokker-Planck equations with In- and Outflow of Mass

  • * Corresponding author: Ina Humpert

    * Corresponding author: Ina Humpert 
Abstract Full Text(HTML) Figure(10) Related Papers Cited by
  • Motivated by modeling transport processes in the growth of neurons, we present results on (nonlinear) Fokker-Planck equations where the total mass is not conserved. This is either due to in- and outflow boundary conditions or to spatially distributed reaction terms. We are able to prove exponential decay towards equilibrium using entropy methods in several situations. As there is no conservation of mass it is difficult to exploit the gradient flow structure of the differential operator which renders the analysis more challenging. In particular, classical logarithmic Sobolev inequalities are not applicable any more. Our analytic results are illustrated by extensive numerical studies.

    Mathematics Subject Classification: Primary: 35Q84, 35K57, 35Q92.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Sketch of a neuron (1) cell nucleus, 2) dendrite and 3) axon)

    Figure 2.  Sketch of the geometry of boundary in- and outflux in 2D with a possible density

    Figure 3.  Evolution over Time of the Particle Concentration: The time evolution of $ \rho $ solving (3) in comparison to the calculated stationary solution (21) for $ \alpha = 1, \beta = 0.9 $ and initial particle concentration $ \rho(x) = -0.1x +1.2 $. (a) The initial concentration at $ t = 0 $, (b) strong influence of the boundary terms at $ t = 0.05 $, (c) strong influence of the drift term and the diffusion at $ t = 1.5 $, (d) equilibrium state at $ t = 9 $

    Figure 4.  Relative Entropy: The relative entropy (15) for the one dimensional version of (3) for the initial particle concentration $ \rho(x) = -0.1x +1.2 $. (a) Natural logarithm of the relative entropy for $ \alpha = 1, \; \beta = 1 $ and variable scaling factor $ \gamma $ of the potential term, (b) relation between the scaling factor $ \gamma $ and the corresponding slope of the logarithm of the relative entropy

    Figure 5.  Mass Evolution: Two examples for non monotone mass evolution for $ \alpha = 1 $ and $ \beta = 0.9 $

    Figure 6.  Sketch of the geometry of uniform spatial in- and outflux in 2D

    Figure 7.  Evolution over Time of the Particle Concentration: Solution of (26) in comparison to the calculated stationary solution $ \frac{\alpha}{\beta}e^{V(x)} $ for $ \alpha = 1, \beta = 0.9 $, initial particle concentration $ \rho(x) = -0.1x+1.2 $. (a) The initial particle concentration at $ t = 0 $, (b) + (c) particle concentration at $ t = 0.05 $ and $ t = 1.5 $, (d) equilibrium state at $ t = 20 $

    Figure 8.  Relative Entropy: Natural logarithm of the relative entropy(30) for the one dimensional version of (26) for $ \alpha = 1, \beta = 0.9 $, initial concentration $ \rho(x) = 0.1x +1 $

    Figure 9.  Evolution over Time of the Particle Concentration: $ \rho(x,t) $ solving (35) in comparison to the calculated solution (44) for $ \alpha = 1, \beta = 0.9 $, initial particle concentration $ \rho_0(x) = -(x-0.5)^2+1 $. (a) The initial concentration in comparison with the calculated stationary solution at $ t = 0 $, (b) diffusion strongly visible $ t = 0.05 $, (c) transport term strongly visible $ t = 0.35 $, (d) equilibrium state at $ t = 3.7 $

    Figure 10.  Relative Entropy: The logarithm of the relative entropy for the one dimensional version of (35) for $ \alpha = 1, \beta = 0.9 $ and $ \rho_0(x) = -(x-0.5)^2+1 $

  • [1] A. ArnoldJ. A. CarrilloL. DesvillettesJ. DolbeaultA. JüngelC. LedermanP. A. MarkowichG. Toscani and C. Villani, Entropies and equilibria of many-particle systems: An essay on recent research, Monatsh. Math, 142 (2004), 35-43.  doi: 10.1007/s00605-004-0239-2.
    [2] M. BurgerM. Di Francesco and Y. Dolak-Struss, The keller–segel model for chemotaxis with prevention of overcrowding: Linear vs. nonlinear diffusion, SIAM Journal on Mathematical Analysis, 38 (2006), 1288-1315.  doi: 10.1137/050637923.
    [3] M. Burger and J.-F. Pietschmann, Flow characteristics in a crowded transport model, Nonlinearity, 29 (2016), 3528-3550.  doi: 10.1088/0951-7715/29/11/3528.
    [4] J. CarrilloP. Laurenccot and J. Rosado, Fermi–Dirac–Fokker–Planck equation: Well-posedness & long-time asymptotics, Journal of Differential Equations, 247 (2009), 2209-2234.  doi: 10.1016/j.jde.2009.07.018.
    [5] J. A. Carrillo and J. L. Vázquez, Fine asymptotics for fast diffusion equations, Communications in Partial Differential Equations, 28 (2003), 1023-1056.  doi: 10.1081/PDE-120021185.
    [6] M. Del Pino and J. Dolbeault, Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions, Journal de Mathématiques Pures et Appliquées, 81 (2002), 847-875.  doi: 10.1016/S0021-7824(02)01266-7.
    [7] L. Desvillettes and C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation, Inventiones Mathematicae, 159 (2005), 245-316.  doi: 10.1007/s00222-004-0389-9.
    [8] L. Desvillettes and K. Fellner, Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations, J. Math. Anal. Appl, 319 (2006), 157-176.  doi: 10.1016/j.jmaa.2005.07.003.
    [9] L. Desvillettes and C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: The linear Fokker-Planck equation, Communications on Pure and Applied Mathematics, 54 (2001), 1-42.  doi: 10.1002/1097-0312(200101)54:1<1::AID-CPA1>3.0.CO;2-Q.
    [10] M. Dreher and A. Jüngel, Compact families of piecewise constant functions in lp (0, t; b), Nonlinear Analysis, Theory, Methods and Applications, 75 (2012), 3072-3077.  doi: 10.1016/j.na.2011.12.004.
    [11] J. Droniou and J.-L. Vázquez, Noncoercive convection-diffusion elliptic problems with Neumann boundary conditions, Calc. Var. Partial Differential Equations, 34 (2009), 413-434.  doi: 10.1007/s00526-008-0189-y.
    [12] C. M. Elliott and H. Garcke, On the cahn–hilliard equation with degenerate mobility, Siam Journal on Mathematical Analysis, 27 (1996), 404-423.  doi: 10.1137/S0036141094267662.
    [13] L. C. Evans, Partial Differential Equations, volume 19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, second edition, 2010. doi: 10.1090/gsm/019.
    [14] W. Feller, The parabolic differential equations and the associated semi-groups of transformations, Annals of Mathematics, 55 (1952), 468-519.  doi: 10.2307/1969644.
    [15] K. Fellner and M. Kniely, Uniform convergence to equilibrium for a family of drift-diffusion models with trap-assisted recombination and the limiting shockley–read–hall model, arXiv preprint, arXiv: 1703.02881, 2017.
    [16] K. FellnerL. Neumann and C. Schmeiser, Convergence to global equilibrium for spatially inhomogeneous kinetic models of non-micro-reversible processes, Monatshefte Für Mathematik, 141 (2004), 289-299.  doi: 10.1007/s00605-002-0058-2.
    [17] S. N. Gomes, A. M. Stuart and M.-T. Wolfram, Parameter estimation for macroscopic pedestrian dynamics models from microscopic data, SIAM J. Appl. Math., 79 (2019), 1475–1500, arXiv1809.08046. doi: 10.1137/18M1215980.
    [18] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, London, Melbourne, 1985.
    [19] J. HaskovecS. HittmeirP. Markowich and A. Mielke, Decay to equilibrium for energy-reaction-diffusion systems, SIAM J. Math. Anal, 50 (2018), 1037-1075.  doi: 10.1137/16M1062065.
    [20] R. JordanD. Kinderlehrer and F. Otto, The variational formulation of the fokker–planck equation, SIAM Journal on Mathematical Analysis, 29 (1998), 1-17.  doi: 10.1137/S0036141096303359.
    [21] D. Le and H. Smith, Strong positivity of solutions to parabolic and elliptic equations on nonsmooth domains, Journal of Mathematical Analysis and Applications, 275 (2002), 208-221.  doi: 10.1016/S0022-247X(02)00314-1.
    [22] M. Liero and A. Mielke, Gradient structures and geodesic convexity for reaction–diffusion systems, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371 (2013), 20120346, 28pp. doi: 10.1098/rsta.2012.0346.
    [23] P. A. Markowich and C. Villani, On the trend to equilibrium for the Fokker-Planck equation: An interplay between physics and functional analysis, Mat. Contemp., 19 (2000), 1–29. Ⅵ Workshop on Partial Differential Equations, Part Ⅱ (Rio de Janeiro, 1999).
    [24] P. K. Mattila and P. Lappalainen, Filopodia: Molecular architecture and cellular functions, Nature Reviews Molecular Cell Biology, 9 (2008), 446-454.  doi: 10.1038/nrm2406.
    [25] A. Mielke, A gradient structure for reaction–diffusion systems and for energy-drift-diffusion systems, Nonlinearity, 24 (2011), 1329-1346.  doi: 10.1088/0951-7715/24/4/016.
    [26] T. NambaY. FunahashiS. NakamutaC. XuT. Takano and K. Kaibuchi, Extracellular and intracellular signaling for neuronal polarity, Physiological Reviews, 95 (2015), 995-1024.  doi: 10.1152/physrev.00025.2014.
    [27] I. Naoyuki, T. Michinori and S. Yuichi, Systems biology of symmetry breaking during neuronal polarity formation, Developmental Neurobiology, 71 584–593.
    [28] F. Otto, The geometry of dissipative evolution equations: The porous medium equation, Communications in Partial Differential Equations, 26 (2001), 101-174.  doi: 10.1081/PDE-100002243.
    [29] D. Roland, On poincaré, friedrichs and korns inequalities on domains and hypersurfaces, arXiv preprint, arXiv: 1504.01677, 2015.
    [30] T. TakanoC. XuY. FunahashiT. Namba and K. Kaibuchi, Neuronal polarization, Development, 142 (2015), 2088-2093.  doi: 10.1242/dev.114454.
  • 加载中

Figures(10)

SHARE

Article Metrics

HTML views(801) PDF downloads(249) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return