• Previous Article
    Global existence and long time behavior of the Ellipsoidal-Statistical-Fokker-Planck model for diatomic gases
  • KRM Home
  • This Issue
  • Next Article
    Trend to the equilibrium for the Fokker-Planck system with an external magnetic field
April  2020, 13(2): 345-371. doi: 10.3934/krm.2020012

Diffusion and kinetic transport with very weak confinement

1. 

CEREMADE (CNRS UMR n° 7534), PSL university, Université Paris-Dauphine, Place de Lattre de Tassigny, 75775 Paris 16, France

2. 

Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria

* Corresponding author: Emeric Bouin

Received  January 2019 Revised  September 2019 Published  January 2020

This paper is devoted to Fokker-Planck and linear kinetic equations with very weak confinement corresponding to a potential with an at most logarithmic growth and no integrable stationary state. Our goal is to understand how to measure the decay rates when the diffusion wins over the confinement although the potential diverges at infinity. When there is no confinement potential, it is possible to rely on Fourier analysis and mode-by-mode estimates for the kinetic equations. Here we develop an alternative approach based on moment estimates and Caffarelli-Kohn-Nirenberg inequalities of Nash type for diffusion and kinetic equations.

Citation: Emeric Bouin, Jean Dolbeault, Christian Schmeiser. Diffusion and kinetic transport with very weak confinement. Kinetic & Related Models, 2020, 13 (2) : 345-371. doi: 10.3934/krm.2020012
References:
[1]

E. Aghion, D. A. Kessler and E. Barkai, From non-normalizable Boltzmann-Gibbs statistics to infinite-ergodic theory, Phys. Rev. Lett., 122 (2019), 010601. doi: 10.1103/PhysRevLett.122.010601.  Google Scholar

[2]

D. BakryF. BolleyI. Gentil and P. Maheux, Weighted Nash inequalities, Rev. Mat. Iberoam., 28 (2012), 879-906.  doi: 10.4171/RMI/695.  Google Scholar

[3]

D. BakryP. Cattiaux and A. Guillin, Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré, J. Funct. Anal., 254 (2008), 727-759.  doi: 10.1016/j.jfa.2007.11.002.  Google Scholar

[4]

D. Bakry, I. Gentil and M. Ledoux, Analysis and Geometry of Markov Diffusion Operators, vol. 348 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer, Cham, 2014. doi: 10.1007/978-3-319-00227-9.  Google Scholar

[5]

F. Baudoin, Bakry-Émery meet Villani,, J. Funct. Anal., 273 (2017), 2275–2291. doi: 10.1016/j.jfa.2017.06.021.  Google Scholar

[6]

J. Ben-Artzi and A. Einav., Weak Poincaré inequalities in the absence of spectral gaps, Annales Henri Poincaré, (Oct. 2019). doi: 10.1007/s00023-019-00858-4.  Google Scholar

[7]

E. Bouin, J. Dolbeault, S. Mischler, C. Mouhot and C. Schmeiser, Hypocoercivity without confinement, 2017, https://hal.archives-ouvertes.fr/hal-01575501, To appear in Pure and Applied Analysis. Google Scholar

[8]

E. Bouin, J. Dolbeault and C. Schmeiser, A variational proof of Nash's inequality, https://hal.archives-ouvertes.fr/hal-01940110, To appear in Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. Google Scholar

[9]

L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math., 53 (1984), 259–275, http://www.numdam.org/item/CM_1984__53_3_259_0.  Google Scholar

[10]

C. Cao, The kinetic Fokker-Planck equation with weak confinement force, 2018, https://hal.archives-ouvertes.fr/hal-01697058. Google Scholar

[11]

E. A. Carlen and M. Loss, Sharp constant in Nash's inequality, Internat. Math. Res. Notices, 1993 (1993), 213-215.  doi: 10.1155/S1073792893000224.  Google Scholar

[12]

J. Dolbeault, C. Mouhot and C. Schmeiser, Hypocoercivity for kinetic equations with linear relaxation terms, Comptes Rendus Mathématique, 347 (2009), 511–516. doi: 10.1016/j.crma.2009.02.025.  Google Scholar

[13]

J. DolbeaultC. Mouhot and C. Schmeiser, Hypocoercivity for linear kinetic equations conserving mass, Trans. Amer. Math. Soc., 367 (2015), 3807-3828.  doi: 10.1090/S0002-9947-2015-06012-7.  Google Scholar

[14]

J. DolbeaultM. Muratori and B. Nazaret, Weighted interpolation inequalities: A perturbation approach, Math. Ann., 369 (2017), 1237-1270.  doi: 10.1007/s00208-016-1480-4.  Google Scholar

[15]

L. C. Evans, Partial Differential Equations, vol. 19 of Graduate Studies in Mathematics, 2nd edition, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.  Google Scholar

[16]

J. B. J. Fourier, Théorie Analytique de la Chaleur, Reprint of the 1822 ed. edition, Cambridge, Cambridge University Press, 2009. doi: 10.1017/CBO9780511693229.  Google Scholar

[17]

F. Hérau, Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation, Asymptot. Anal., 46 (2006), 349–359, https://content.iospress.com/articles/asymptotic-analysis/asy741.  Google Scholar

[18]

F. Hérau, Short and long time behavior of the Fokker-Planck equation in a confining potential and applications, J. Funct. Anal., 244 (2007), 95-118.  doi: 10.1016/j.jfa.2006.11.013.  Google Scholar

[19]

S. Hu and X. Wang, Subexponential decay in kinetic Fokker–Planck equation: Weak hypocoercivity, Bernoulli, 25 (2019), 174-188.  doi: 10.3150/17-BEJ982.  Google Scholar

[20]

V. P. Il'in, Some integral inequalities and their applications in the theory of differentiable functions of several variables, Mat. Sb. (N.S.), 54(96) (1961), 331–380, http://mi.mathnet.ru/msb4741.  Google Scholar

[21]

O. Kavian and S. Mischler, The Fokker-Planck equation with subcritical confinement force, 2015, https://hal.archives-ouvertes.fr/hal-01241680. Google Scholar

[22]

J. D. Morgan III, Schrödinger operators whose potentials have separated singularities, J. Operator Theory, 1 (1979), 109-115.   Google Scholar

[23]

C. Mouhot and L. Neumann, Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity, 19 (2006), 969-998.  doi: 10.1088/0951-7715/19/4/011.  Google Scholar

[24]

J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math., 80 (1958), 931-954.  doi: 10.2307/2372841.  Google Scholar

[25]

A. Persson, Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator, Math. Scand., 8 (1960), 143-153.   Google Scholar

[26]

M. Röckner and F.-Y. Wang, Weak Poincaré inequalities and $\mathrm L^2$-convergence rates of Markov semigroups, J. Funct. Anal., 185 (2001), 564-603.  doi: 10.1006/jfan.2001.3776.  Google Scholar

[27]

B. Simon, Semiclassical analysis of low lying eigenvalues. Ⅰ. Nondegenerate minima: Asymptotic expansions, Ann. Inst. H. Poincaré Sect. A (N.S.), 38 (1983), 295-308.   Google Scholar

[28]

J. L. Vázquez, The mathematical theories of diffusion: Nonlinear and fractional diffusion, in Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions, vol. 2186 of Lecture Notes in Math., Springer, Cham, 2017,205–278.  Google Scholar

[29]

C. Villani, Hypocoercivity, Mem. Amer. Math. Soc., 202 (2009), ⅳ+141pp. doi: 10.1090/S0065-9266-09-00567-5.  Google Scholar

[30]

F.-Y. Wang, Functional inequalities for empty essential spectrum, J. Funct. Anal., 170 (2000), 219-245.  doi: 10.1006/jfan.1999.3516.  Google Scholar

[31]

F.-Y. Wang, Functional inequalities and spectrum estimates: The infinite measure case, J. Funct. Anal., 194 (2002), 288–310. doi: 10.1006/jfan.2002.3968.  Google Scholar

[32]

F.-Y. Wang, Intrinsic ultracontractivity on Riemannian manifolds with infinite volume measures, Sci. China Math., 53 (2010), 895-904.  doi: 10.1007/s11425-010-0019-5.  Google Scholar

show all references

References:
[1]

E. Aghion, D. A. Kessler and E. Barkai, From non-normalizable Boltzmann-Gibbs statistics to infinite-ergodic theory, Phys. Rev. Lett., 122 (2019), 010601. doi: 10.1103/PhysRevLett.122.010601.  Google Scholar

[2]

D. BakryF. BolleyI. Gentil and P. Maheux, Weighted Nash inequalities, Rev. Mat. Iberoam., 28 (2012), 879-906.  doi: 10.4171/RMI/695.  Google Scholar

[3]

D. BakryP. Cattiaux and A. Guillin, Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré, J. Funct. Anal., 254 (2008), 727-759.  doi: 10.1016/j.jfa.2007.11.002.  Google Scholar

[4]

D. Bakry, I. Gentil and M. Ledoux, Analysis and Geometry of Markov Diffusion Operators, vol. 348 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer, Cham, 2014. doi: 10.1007/978-3-319-00227-9.  Google Scholar

[5]

F. Baudoin, Bakry-Émery meet Villani,, J. Funct. Anal., 273 (2017), 2275–2291. doi: 10.1016/j.jfa.2017.06.021.  Google Scholar

[6]

J. Ben-Artzi and A. Einav., Weak Poincaré inequalities in the absence of spectral gaps, Annales Henri Poincaré, (Oct. 2019). doi: 10.1007/s00023-019-00858-4.  Google Scholar

[7]

E. Bouin, J. Dolbeault, S. Mischler, C. Mouhot and C. Schmeiser, Hypocoercivity without confinement, 2017, https://hal.archives-ouvertes.fr/hal-01575501, To appear in Pure and Applied Analysis. Google Scholar

[8]

E. Bouin, J. Dolbeault and C. Schmeiser, A variational proof of Nash's inequality, https://hal.archives-ouvertes.fr/hal-01940110, To appear in Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. Google Scholar

[9]

L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math., 53 (1984), 259–275, http://www.numdam.org/item/CM_1984__53_3_259_0.  Google Scholar

[10]

C. Cao, The kinetic Fokker-Planck equation with weak confinement force, 2018, https://hal.archives-ouvertes.fr/hal-01697058. Google Scholar

[11]

E. A. Carlen and M. Loss, Sharp constant in Nash's inequality, Internat. Math. Res. Notices, 1993 (1993), 213-215.  doi: 10.1155/S1073792893000224.  Google Scholar

[12]

J. Dolbeault, C. Mouhot and C. Schmeiser, Hypocoercivity for kinetic equations with linear relaxation terms, Comptes Rendus Mathématique, 347 (2009), 511–516. doi: 10.1016/j.crma.2009.02.025.  Google Scholar

[13]

J. DolbeaultC. Mouhot and C. Schmeiser, Hypocoercivity for linear kinetic equations conserving mass, Trans. Amer. Math. Soc., 367 (2015), 3807-3828.  doi: 10.1090/S0002-9947-2015-06012-7.  Google Scholar

[14]

J. DolbeaultM. Muratori and B. Nazaret, Weighted interpolation inequalities: A perturbation approach, Math. Ann., 369 (2017), 1237-1270.  doi: 10.1007/s00208-016-1480-4.  Google Scholar

[15]

L. C. Evans, Partial Differential Equations, vol. 19 of Graduate Studies in Mathematics, 2nd edition, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.  Google Scholar

[16]

J. B. J. Fourier, Théorie Analytique de la Chaleur, Reprint of the 1822 ed. edition, Cambridge, Cambridge University Press, 2009. doi: 10.1017/CBO9780511693229.  Google Scholar

[17]

F. Hérau, Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation, Asymptot. Anal., 46 (2006), 349–359, https://content.iospress.com/articles/asymptotic-analysis/asy741.  Google Scholar

[18]

F. Hérau, Short and long time behavior of the Fokker-Planck equation in a confining potential and applications, J. Funct. Anal., 244 (2007), 95-118.  doi: 10.1016/j.jfa.2006.11.013.  Google Scholar

[19]

S. Hu and X. Wang, Subexponential decay in kinetic Fokker–Planck equation: Weak hypocoercivity, Bernoulli, 25 (2019), 174-188.  doi: 10.3150/17-BEJ982.  Google Scholar

[20]

V. P. Il'in, Some integral inequalities and their applications in the theory of differentiable functions of several variables, Mat. Sb. (N.S.), 54(96) (1961), 331–380, http://mi.mathnet.ru/msb4741.  Google Scholar

[21]

O. Kavian and S. Mischler, The Fokker-Planck equation with subcritical confinement force, 2015, https://hal.archives-ouvertes.fr/hal-01241680. Google Scholar

[22]

J. D. Morgan III, Schrödinger operators whose potentials have separated singularities, J. Operator Theory, 1 (1979), 109-115.   Google Scholar

[23]

C. Mouhot and L. Neumann, Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity, 19 (2006), 969-998.  doi: 10.1088/0951-7715/19/4/011.  Google Scholar

[24]

J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math., 80 (1958), 931-954.  doi: 10.2307/2372841.  Google Scholar

[25]

A. Persson, Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator, Math. Scand., 8 (1960), 143-153.   Google Scholar

[26]

M. Röckner and F.-Y. Wang, Weak Poincaré inequalities and $\mathrm L^2$-convergence rates of Markov semigroups, J. Funct. Anal., 185 (2001), 564-603.  doi: 10.1006/jfan.2001.3776.  Google Scholar

[27]

B. Simon, Semiclassical analysis of low lying eigenvalues. Ⅰ. Nondegenerate minima: Asymptotic expansions, Ann. Inst. H. Poincaré Sect. A (N.S.), 38 (1983), 295-308.   Google Scholar

[28]

J. L. Vázquez, The mathematical theories of diffusion: Nonlinear and fractional diffusion, in Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions, vol. 2186 of Lecture Notes in Math., Springer, Cham, 2017,205–278.  Google Scholar

[29]

C. Villani, Hypocoercivity, Mem. Amer. Math. Soc., 202 (2009), ⅳ+141pp. doi: 10.1090/S0065-9266-09-00567-5.  Google Scholar

[30]

F.-Y. Wang, Functional inequalities for empty essential spectrum, J. Funct. Anal., 170 (2000), 219-245.  doi: 10.1006/jfan.1999.3516.  Google Scholar

[31]

F.-Y. Wang, Functional inequalities and spectrum estimates: The infinite measure case, J. Funct. Anal., 194 (2002), 288–310. doi: 10.1006/jfan.2002.3968.  Google Scholar

[32]

F.-Y. Wang, Intrinsic ultracontractivity on Riemannian manifolds with infinite volume measures, Sci. China Math., 53 (2010), 895-904.  doi: 10.1007/s11425-010-0019-5.  Google Scholar

[1]

B. Abdellaoui, I. Peral. On quasilinear elliptic equations related to some Caffarelli-Kohn-Nirenberg inequalities. Communications on Pure & Applied Analysis, 2003, 2 (4) : 539-566. doi: 10.3934/cpaa.2003.2.539

[2]

Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250

[3]

Matteo Bonforte, Jean Dolbeault, Matteo Muratori, Bruno Nazaret. Weighted fast diffusion equations (Part Ⅰ): Sharp asymptotic rates without symmetry and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities. Kinetic & Related Models, 2017, 10 (1) : 33-59. doi: 10.3934/krm.2017002

[4]

Pablo L. De Nápoli, Irene Drelichman, Ricardo G. Durán. Improved Caffarelli-Kohn-Nirenberg and trace inequalities for radial functions. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1629-1642. doi: 10.3934/cpaa.2012.11.1629

[5]

Mayte Pérez-Llanos. Optimal power for an elliptic equation related to some Caffarelli-Kohn-Nirenberg inequalities. Communications on Pure & Applied Analysis, 2016, 15 (6) : 1975-2005. doi: 10.3934/cpaa.2016024

[6]

Boumediene Abdellaoui, Fethi Mahmoudi. An improved Hardy inequality for a nonlocal operator. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1143-1157. doi: 10.3934/dcds.2016.36.1143

[7]

John W. Barrett, Endre Süli. Existence of global weak solutions to Fokker-Planck and Navier-Stokes-Fokker-Planck equations in kinetic models of dilute polymers. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 371-408. doi: 10.3934/dcdss.2010.3.371

[8]

Mateus Balbino Guimarães, Rodrigo da Silva Rodrigues. Elliptic equations involving linear and superlinear terms and critical Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2697-2713. doi: 10.3934/cpaa.2013.12.2697

[9]

Benoît Pausader, Walter A. Strauss. Analyticity of the nonlinear scattering operator. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 617-626. doi: 10.3934/dcds.2009.25.617

[10]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[11]

G. M. de Araújo, S. B. de Menezes. On a variational inequality for the Navier-Stokes operator with variable viscosity. Communications on Pure & Applied Analysis, 2006, 5 (3) : 583-596. doi: 10.3934/cpaa.2006.5.583

[12]

Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017

[13]

Zhili Ge, Gang Qian, Deren Han. Global convergence of an inexact operator splitting method for monotone variational inequalities. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1013-1026. doi: 10.3934/jimo.2011.7.1013

[14]

Peter C. Gibson. On the measurement operator for scattering in layered media. Inverse Problems & Imaging, 2017, 11 (1) : 87-97. doi: 10.3934/ipi.2017005

[15]

Shui-Nee Chow, Wuchen Li, Haomin Zhou. Entropy dissipation of Fokker-Planck equations on graphs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4929-4950. doi: 10.3934/dcds.2018215

[16]

Martin Burger, Ina Humpert, Jan-Frederik Pietschmann. On Fokker-Planck equations with In- and Outflow of Mass. Kinetic & Related Models, 2020, 13 (2) : 249-277. doi: 10.3934/krm.2020009

[17]

Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic & Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056

[18]

José A. Cañizo, Chuqi Cao, Josephine Evans, Havva Yoldaş. Hypocoercivity of linear kinetic equations via Harris's Theorem. Kinetic & Related Models, 2020, 13 (1) : 97-128. doi: 10.3934/krm.2020004

[19]

Teemu Tyni, Valery Serov. Scattering problems for perturbations of the multidimensional biharmonic operator. Inverse Problems & Imaging, 2018, 12 (1) : 205-227. doi: 10.3934/ipi.2018008

[20]

Linghua Chen, Espen R. Jakobsen. L1 semigroup generation for Fokker-Planck operators associated to general Lévy driven SDEs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5735-5763. doi: 10.3934/dcds.2018250

2018 Impact Factor: 1.38

Article outline

[Back to Top]