Advanced Search
Article Contents
Article Contents

Global existence and long time behavior of the Ellipsoidal-Statistical-Fokker-Planck model for diatomic gases

  • * Corresponding author: Lei Jing

    * Corresponding author: Lei Jing 
The research was supported by National Natural Science Foundation of China grants No. 11671384, 11871047, 11931010, 11671120 and by the key research project of the Academy for Multidisciplinary Studies, Capital Normal University.
Abstract Full Text(HTML) Related Papers Cited by
  • We are concerned with the global existence and long time behavior of the solutions to the ES-FP model for diatomic gases proposed in [22]. The global existence of the solutions for this model near the global Maxwellian is established by nonlinear energy method based on the macro-micro decomposition. An algebraic convergence rate in time of the solutions to the equilibrium state is obtained by constructing the compensating function. Since the density distribution function $ F(t, x, v, I) $ also contains energy variable $ I $, we derive more general Poincaré inequality including variables $ v, I $ on $ \mathbb{R}^3\times \mathbb{R}^+ $ to establish the coercivity estimate of the linearized operator.

    Mathematics Subject Classification: Primary: 35A01 35B40 35Q84; Secondary: 82C40.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] M. A. AI-Gwaiz, Sturm-Liouville Theory and its Applications, Springer-Verlag, London, 2008.
    [2] P. AndrièsP. Le TallecJ.-F. Perlat and B. Perthame, The Gaussian-BGK model of Boltzmann equation with small Prandtl number, Eur. J. Mech. B Fluids, 19 (2000), 813-830.  doi: 10.1016/S0997-7546(00)01103-1.
    [3] J. Bang and S.-B. Yun, Stationary solutions for the ellipsoidal BGK model in a slab, J. Differential Equations, 261 (2016), 5803-5828.  doi: 10.1016/j.jde.2016.08.022.
    [4] W. Beckner, A generalized Poincaré inequality for Gaussian measures, Proc. Amer. Math. Soc., 105 (1989), 397-400.  doi: 10.2307/2046956.
    [5] J. A. CarrilloR. J. Duan and A. Moussa, Global classical solutions close to equilibrium to the Vlasov-Fokker-Planck-Euler system, Kinet. Relat. Models, 4 (2011), 227-258.  doi: 10.3934/krm.2011.4.227.
    [6] C. CercignaniMathematical Methods in Kinetic Theory, Plenum Press, New York, 1990.  doi: 10.1007/978-1-4899-7291-0.
    [7] C. Cercignani, The Boltzmann Equation and its Application, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1039-9.
    [8] P. Degond and B. Lucquin-Desreux, The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case, Math. Models Methods Appl. Sci., 2 (1992), 167-182.  doi: 10.1142/S0218202592000119.
    [9] R. T. Glassey, The Cauchy Problem in Kinetic Theory, SIAM, Philadelphia, 1996. doi: 10.1137/1.9781611971477.
    [10] H. Grad, On the kinetic theory of rarefied gases, Comm. Pure Appl. Math., 2 (1949), 331-407.  doi: 10.1002/cpa.3160020403.
    [11] L. Gross, Logarithmic Sobolev inequality, Amer. J. Math., 97 (1975), 1061-1083.  doi: 10.2307/2373688.
    [12] Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians, Comm. Pure Appl. Math., 55 (2002), 1104-1135.  doi: 10.1002/cpa.10040.
    [13] Y. Guo, The Vlasov-Maxwell-Boltzmann system near Maxwellians, Invent. Math., 153 (2003), 593-630.  doi: 10.1007/s00222-003-0301-z.
    [14] Y. Guo, The Boltzmann equation in the whole space, Indiana Univ. Math. J., 53 (2004), 1081-1094.  doi: 10.1512/iumj.2004.53.2574.
    [15] L. H. Holway, Kinetic theory of shock structure using an ellipsoidal distribution function, in Rarefied Gas Dynamics Vol. I, Academic Press, New York, 1966,193–215.
    [16] P. JennyM. Torrihon and S. Heinz, A solution algorithm for the fluid dynamic equations based on a stochastic model for molecular motion, J. Comput. Phys., 229 (2010), 1077-1098.  doi: 10.1016/j.jcp.2009.10.008.
    [17] S. Kawashima, The Boltzmann equation and thirteen moments, Japan J. Appl. Math., 7 (1990), 301-320.  doi: 10.1007/BF03167846.
    [18] H. L. Li, J. W. Sun, T. Yang and M. Y. Zhong, Large time behavior of solutions to Vlasov-Poisson-Landau (Fokker-Planck) equations, Sci Sin Math(in Chinese), 46 (2016), 981–1004. Available from: https://doi.org/10.1360/N012015-00230.
    [19] D. Liberzon and R. W. Brockett, Spectral analysis of Fokker-Planck and related operators arising from linear stochastic differential equations, SIAM J. Control Optim., 38 (2000), 1453-1467.  doi: 10.1137/S0363012998338193.
    [20] L. Luo and H. J. Yu, Spectrum analysis of the linear Fokker-Planck equation, Anal. Appl. (Singap.), 15 (2017), 313-331.  doi: 10.1142/S0219530515500219.
    [21] J. Mathiaud and L. Mieussens, A Fokker-Planck Mode of the Boltzmann equation with correct Prandtl number, J. Stat. Phys., 162 (2016), 397-414.  doi: 10.1007/s10955-015-1404-9.
    [22] J. Mathiaud and L. Mieussens, A Fokker-Planck model of the Boltzmann equation with correct Prandtl number for polyatomic gases, J. Stat. Phys., 168 (2017), 1031-1055.  doi: 10.1007/s10955-017-1837-4.
    [23] J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math., 80 (1958), 931-954.  doi: 10.2307/2372841.
    [24] S. J. Park and S.-B. Yun, Cauchy problem for the ellipsoidal-BGK model of the Boltzmann equation, J. Math. Phys., 57 (2016), 081512, 19 pp. doi: 10.1063/1.4960745.
    [25] S. J. Park and S.-B. Yun, Cauchy problem for the ellipsoidal BGK model for polyatomic particles, J. Differential Equations, 266 (2019), 7678-7708.  doi: 10.1016/j.jde.2018.12.013.
    [26] J. W. Sun and L. Jing, Global existence and long time behavior of the ellipsoidal-Fokker-Planck equation, Appl. Anal., 98 (2019), 1605-1625.  doi: 10.1080/00036811.2018.1434154.
    [27] C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook of Mathematical Fluid Dynamics, North-Holland, Amsterdam, 1 (2002), 71–305.
    [28] N. Wiener, The Fourier Integral and Certain of its Applications, Reprint of the 1933 edition. With a foreword by Jean-Pierre Kahane. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1988. doi: 10.1017/CBO9780511662492.
    [29] T. Yang and H. J. Yu, Hypocoercivity of the relativistic Boltzmann and Landau equations in the whole space, J. Differential Equations, 248 (2010), 1518-1560.  doi: 10.1016/j.jde.2009.11.027.
    [30] T. Yang and H. J. Yu, Optimal convergence rates of classical solutions for Vlasov-Poisson-Blltzmann system, Comm. Math. Phys., 301 (2011), 319-355.  doi: 10.1007/s00220-010-1142-4.
    [31] T. Yang and H. J. Yu, Optimal convergence rates of Landau equation with external forcing in the whole space, Acta Math. Sci. Ser. B, 29 (2009), 1035-1062.  doi: 10.1016/S0252-9602(09)60085-0.
    [32] T. Yang and H. J. Yu, Global solutions to the relativistic Landau-Maxwell system in the whole space, J. Math. Pures Appl., 97 (2012), 602-634.  doi: 10.1016/j.matpur.2011.09.006.
    [33] T. Yang and H. J. Yu, Global classical solutions for the Vlasov-Maxwell-Fokker-Planck system, SIAM J. Math. Anal., 42 (2010), 459-488.  doi: 10.1137/090755796.
    [34] S.-B. Yun, Ellipsoidal BGK model near a global Maxwellian, SIAM J. Math. Anal., 47 (2015), 2324-2354.  doi: 10.1137/130932399.
    [35] S.-B. Yun, Classical solutions for the ellipsoidal BGK model with fixed collision frequency, J. Differential Equations, 259 (2015), 6009-6037.  doi: 10.1016/j.jde.2015.07.016.
    [36] S.-B. Yun, Ellipsoidal BGK model for polyatomic molecules near Maxwellians: A dichotomy in the dissipation estimate, J. Differential Equations, 266 (2019), 5566-5614.  doi: 10.1016/j.jde.2018.10.036.
  • 加载中

Article Metrics

HTML views(488) PDF downloads(217) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint