[1]
|
L. Almeida, F. Bubba, B. Perthame and C. Pouchol, Energy and implicit discretization of the Fokker-Planck and Keller-Segel type equations, Netw. Heterog. Media, 14 (2019), 23-41.
doi: 10.3934/nhm.2019002.
|
[2]
|
R. Bailo, J. A. Carrillo and J. Hu, Fully discrete positivity-preserving and energy-dissipative schemes for nonlinear nonlocal equations with a gradient flow structure, arXiv e-prints, 2018. arXiv: 1811.11502.
|
[3]
|
J. Bandyopadhyay and J. J. L. Velázquez, Blow-up rate estimates for the solutions of the bosonic Boltzmann–Nordheim equation, J. Math. Phys., 56 (2015), 063302, 27pp.
doi: 10.1063/1.4921917.
|
[4]
|
W. Bao, Mathematical models and numerical methods for Bose–Einstein condensation, In Proceedings of the International Congress of Mathematicians–-Seoul 2014. Vol. IV, 971–996. Kyung Moon Sa, Seoul, 2014.
|
[5]
|
W. Bao and Y. Cai, Mathematical theory and numerical methods for Bose–Einstein condensation, Kinet. Relat. Models, 6 (2013), 1-135.
doi: 10.3934/krm.2013.6.1.
|
[6]
|
W. Bao, L. Pareschi and P. A. Markowich, Quantum kinetic theory: Modelling and numerics for Bose-Einstein condensation, In Modeling and Computational Methods for Kinetic Equations, Model. Simul. Sci. Eng. Technol., 287–320. Birkhäuser Boston, Boston, MA, 2004.
|
[7]
|
N. Ben Abdallah, I. M. Gamba and G. Toscani, On the minimization problem of sub-linear convex functionals, Kinet. Relat. Models, 4 (2011), 857-871.
doi: 10.3934/krm.2011.4.857.
|
[8]
|
A. Blanchet, V. Calvez and J. A. Carrillo, Convergence of the mass-transport steepest descent scheme for the subcritical patlak–keller–segel model, SIAM J. Numer. Anal., 46 (2008), 691-721.
doi: 10.1137/070683337.
|
[9]
|
J. A. Cañizo, J. A. Carrillo, P. Laurençot and J. Rosado, The Fokker–Planck equation for bosons in 2D: Well-posedness and asymptotic behavior, Nonlinear Anal., 137 (2016), 291-305.
doi: 10.1016/j.na.2015.07.030.
|
[10]
|
V. Calvez and T. O. Gallouët, Particle approximation of the one dimensional Keller-Segel equation, stability and rigidity of the blow-up, Discrete Contin. Dyn. Syst., 36 (2016), 1175-1208.
doi: 10.3934/dcds.2016.36.1175.
|
[11]
|
J. A. Carrillo, A. Chertock and Y. Huang, A finite-volume method for nonlinear nonlocal equations with a gradient flow structure, Commun. Comput. Phys., 17 (2015), 233-258.
doi: 10.4208/cicp.160214.010814a.
|
[12]
|
J. A. Carrillo, K. Craig and F. S. Patacchini, A blob method for diffusion, Calc. Var. Partial Differential Equations, 58 (2019), Art. 53, 53 pp.
doi: 10.1007/s00526-019-1486-3.
|
[13]
|
J. A. Carrillo, M. Di Francesco and G. Toscani, Condensation phenomena in nonlinear drift equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 15 (2016), 145-171.
|
[14]
|
J. A. Carrillo, B. Düring, D. Matthes and D. S. McCormick, A lagrangian scheme for the solution of nonlinear diffusion equations using moving simplex meshes, J. Sci. Comput., 75 {2018), 1463–1499.
doi: 10.1007/s10915-017-0594-5.
|
[15]
|
J. A. Carrillo, K. Hopf and J. L. Rodrigo, On the singularity formation and relaxation to equilibrium in 1D Fokker–Planck model with superlinear drift, Adv. Math., 360 (2020), 106883, 66pp.
doi: 10.1016/j.aim.2019.106883.
|
[16]
|
J. A. Carrillo, A. Jüngel, P. A. Markowich, G. Toscani and A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatsh. Math., 133 (2001), 1-82.
doi: 10.1007/s006050170032.
|
[17]
|
J. A. Carrillo, P. Laurenñot and J. Rosado, Fermi-Dirac-Fokker-Planck equation: Well-posedness & long-time asymptotics, J. Differential Equations, 247 (2009), 2209-2234.
doi: 10.1016/j.jde.2009.07.018.
|
[18]
|
J. A. Carrillo, S. Lisini, G. Savaré and D. Slepčev, Nonlinear mobility continuity equations and generalized displacement convexity, J. Funct. Anal., 258 (2010), 1273-1309.
doi: 10.1016/j.jfa.2009.10.016.
|
[19]
|
J. A. Carrillo and J. S. Moll, Numerical simulation of diffusive and aggregation phenomena in nonlinear continuity equations by evolving diffeomorphisms, SIAM J. Scientific Computing, 31 (2009), 4305-4329.
doi: 10.1137/080739574.
|
[20]
|
J. A. Carrillo, H. Ranetbauer and M.-T. Wolfram, Numerical simulation of nonlinear continuity equations by evolving diffeomorphisms, J. Comput. Phys., 327 (2016), 186-202.
doi: 10.1016/j.jcp.2016.09.040.
|
[21]
|
J. A. Carrillo, J. Rosado and F. Salvarani, 1d nonlinear Fokker–Planck equations for fermions and bosons, Appl. Math. Lett., 21 (2008), 148-154.
doi: 10.1016/j.aml.2006.06.023.
|
[22]
|
K. Craig and A. Bertozzi, A blob method for the aggregation equation, Math. Comp., 85 (2016), 1681-1717.
doi: 10.1090/mcom3033.
|
[23]
|
F. Demengel and R. Temam, Convex functions of a measure and applications, Indiana Univ. Math. J., 33 (1984), 673-709.
doi: 10.1512/iumj.1984.33.33036.
|
[24]
|
J. Dolbeault, B. Nazaret and G. Savaré, A new class of transport distances between measures, Calc. Var. Partial Differential Equations, 34 (2009), 193-231.
doi: 10.1007/s00526-008-0182-5.
|
[25]
|
M. Escobedo and S. Mischler, On a quantum Boltzmann equation for a gas of photons, J. Math. Pures Appl., 80 (2001), 471-515.
doi: 10.1016/S0021-7824(00)01201-0.
|
[26]
|
M. Escobedo, S. Mischler and J. Velázquez, Asymptotic description of Dirac mass formation in kinetic equations for quantum particles, J. Differential Equations, 202 (2004), 208-230.
doi: 10.1016/j.jde.2004.03.031.
|
[27]
|
M. Escobedo and J. J. L. Velázquez, On the blow up and condensation of supercritical solutions of the nordheim equation for bosons, Comm. Math. Phys., 330 (2014), 331-365.
doi: 10.1007/s00220-014-2034-9.
|
[28]
|
M. Escobedo and J. J. L. Velázquez, Finite time blow-up and condensation for the bosonic Nordheim equation, Invent. Math., 200 (2015), 761-847.
doi: 10.1007/s00222-014-0539-7.
|
[29]
|
M. Escobedo and J. J. L. Velázquez, On the theory of weak turbulence for the nonlinear Schrödinger equation, Mem. Amer. Math. Soc., 238 (2015), v+107pp.
doi: 10.1090/memo/1124.
|
[30]
|
L. C. Evans, O. Savin and W. Gangbo, Diffeomorphisms and nonlinear heat flows, SIAM J. Math. Anal., 37 (2005), 737-751.
doi: 10.1137/04061386X.
|
[31]
|
F. Filbet, J. Hu and S. Jin, A numerical scheme for the quantum {B}oltzmann equation with stiff collision terms, ESAIM Math. Model. Numer. Anal., 46 (2012), 443-463.
doi: 10.1051/m2an/2011051.
|
[32]
|
L. Gosse and G. Toscani, Lagrangian numerical approximations to one-dimensional convolution-diffusion equations, SIAM J. Sci. Comput., 28 (2006), 1203-1227.
doi: 10.1137/050628015.
|
[33]
|
K. Hopf, On the Singularity Formation and Long-time Asymptotics in a Class of Nonlinear Fokker–Planck Equations, Thesis (Ph.D.)–University of Warwick, 2019.
|
[34]
|
J. Hu, Q. Li and L. Pareschi, Asymptotic-preserving exponential methods for the quantum Boltzmann equation with high-order accuracy, J. Sci. Comput., 62 (2015), 555-574.
doi: 10.1007/s10915-014-9869-2.
|
[35]
|
K. Huang, Statistical Mechanics, John Wiley & Sons, Inc., New York-London, 1963.
|
[36]
|
G. Kaniadakis and P. Quarati, Classical model of bosons and fermions, Phys. Rev. E, 49 (1994), 5103-5110.
|
[37]
|
R. Lacaze, P. Lallemand, Y. Pomeau and S. Rica, Dynamical formation of a Bose–Einstein condensate, Phys. D, 152/153 (2001), 779-786.
doi: 10.1016/S0167-2789(01)00211-1.
|
[38]
|
X. Lu, The Boltzmann equation for Bose–Einstein particles: Condensation in finite time, J. Stat. Phys., 150 (2013), 1138-1176.
doi: 10.1007/s10955-013-0725-9.
|
[39]
|
X. Lu, Long time convergence of the Bose–Einstein condensation, J. Stat. Phys., 162 (2016), 652-670.
doi: 10.1007/s10955-015-1427-2.
|
[40]
|
X. Lu, Long time strong convergence to Bose–Einstein distribution for low temperature, inet. Relat. Models, 11 (2018), 715-734.
doi: 10.3934/krm.2018029.
|
[41]
|
P. A. Markowich and L. Pareschi, Fast conservative and entropic numerical methods for the boson Boltzmann equation, Numer. Math., 99 (2005), 509-532.
doi: 10.1007/s00211-004-0570-5.
|
[42]
|
D. Matthes and H. Osberger, Convergence of a variational lagrangian scheme for a nonlinear drift diffusion equation, ESAIM Math. Model. Numer. Anal., 48 (2014), 697-726.
doi: 10.1051/m2an/2013126.
|
[43]
|
L. Pareschi and M. Zanella, Structure preserving schemes for nonlinear Fokker–Planck equations and applications, J. Sci. Comput., 74 (2018), 1575-1600.
doi: 10.1007/s10915-017-0510-z.
|
[44]
|
D. V. Semikoz and I. I. Tkachev, Kinetics of bose condensation, Phys. Rev. Lett., 74 (1995), 3093-3097.
doi: 10.1103/PhysRevLett.74.3093.
|
[45]
|
D. V. Semikoz and I. I. Tkachev, Condensation of bosons in the kinetic regime, Phys. Rev. D, 55 (1997), 489-502.
doi: 10.1103/PhysRevD.55.489.
|
[46]
|
A. Soffer and M.-B. Tran, On the dynamics of finite temperature trapped Bose gases, Adv. Math., 325 (2018), 533-607.
doi: 10.1016/j.aim.2017.12.007.
|
[47]
|
J. Sopik, C. Sire and P.-H. Chavanis, Dynamics of the Bose–Einstein condensation: Analogy with the collapse dynamics of a classical self-gravitating Brownian gas, Phys. Rev. E (3), 74 (2006), 011112, 15pp.
doi: 10.1103/PhysRevE.74.011112.
|
[48]
|
H. Spohn, Kinetics of the Bose–Einstein condensation,, Phys. D, 239 (2010), 627-634.
doi: 10.1016/j.physd.2010.01.018.
|
[49]
|
G. Toscani, Finite time blow up in kaniadakis–quarati model of bose–einstein particles, Comm. Partial Differential Equations, 37 (2012), 77-87.
doi: 10.1080/03605302.2011.592236.
|