• Previous Article
    The Vlasov-Maxwell-Boltzmann system near Maxwellians with strong background magnetic field
  • KRM Home
  • This Issue
  • Next Article
    Asymptotic behavior for the Vlasov-Poisson equations with strong uniform magnetic field and general initial conditions
June  2020, 13(3): 549-597. doi: 10.3934/krm.2020019

Cercignani-Lampis boundary in the Boltzmann theory

Van Vleck Hall, 480 Lincoln Drive, Madison, WI 53706, USA

Received  June 2019 Revised  December 2019 Published  March 2020

The Boltzmann equation is a fundamental kinetic equation that describes the dynamics of dilute gas. In this paper we study the local well-posedness of the Boltzmann equation in bounded domain with the Cercignani-Lampis boundary condition, which describes the intermediate reflection law between diffuse reflection and specular reflection via two accommodation coefficients. We prove the local-in-time well-posedness of the equation by establishing an $ L^\infty $ estimate. In particular, for the $ L^\infty $ bound we develop a new decomposition on the boundary term combining with repeated interaction through the characteristic. Moreover, under some constraints on the wall temperature and the accommodation coefficients, we construct a unique steady solution of the Boltzmann equation.

Citation: Hongxu Chen. Cercignani-Lampis boundary in the Boltzmann theory. Kinetic & Related Models, 2020, 13 (3) : 549-597. doi: 10.3934/krm.2020019
References:
[1]

Y. CaoC. Kim and D. Lee, Global strong solutions of the Vlasov–Poisson–Boltzmann system in bounded domains, Archive for Rational Mechanics and Analysis, 233 (2019), 1027-1130.  doi: 10.1007/s00205-019-01374-9.  Google Scholar

[2]

C. Cercignani, The boltzmann equation, in The Boltzmann Equation and Its Applications, Springer, (1988), 40–103. doi: 10.1007/978-1-4612-1039-9.  Google Scholar

[3]

C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer Science & Business Media, 2013. Google Scholar

[4]

C. Cercignani and M. Lampis, Kinetic models for gas-surface interactions, transport Theory and Statistical Physics, 1 (1971), 101-114.  doi: 10.1080/00411457108231440.  Google Scholar

[5]

H. Chen, C. Kim and Q. Li, Local Well-posedness of Vlasov-Poisson-Boltzmann Equation with Generalized Diffuse Boundary Condition, submitted. Google Scholar

[6]

T. Cowling, On the Cercignani-Lampis formula for gas-surface interactions, Journal of Physics D: Applied Physics, 7 (1974), 781-785.   Google Scholar

[7]

R. DuanF. HuangY. Wang and Z. Zhang, Effects of soft interaction and non-isothermal boundary upon long-time dynamics of rarefied gas, Archive for Rational Mechanics and Analysis, 234 (2019), 925-1006.  doi: 10.1007/s00205-019-01405-5.  Google Scholar

[8]

R. EspositoY. GuoC. Kim and R. Marra, Non-isothermal boundary in the Boltzmann theory and Fourier law, Communications in Mathematical Physics, 323 (2013), 177-239.  doi: 10.1007/s00220-013-1766-2.  Google Scholar

[9]

R. Esposito, Y. Guo, C. Kim and R. Marra, Stationary solutions to the Boltzmann equation in the hydrodynamic limit, Annals of PDE, 4 (2018), Art. 1,119 pp. doi: 10.1007/s40818-017-0037-5.  Google Scholar

[10]

R. Garcia and C. Siewert, The linearized Boltzmann equation with Cercignani–Lampis boundary conditions: Basic flow problems in a plane channel, European Journal of Mechanics-B/Fluids, 28 (2009), 387-396.  doi: 10.1016/j.euromechflu.2008.12.001.  Google Scholar

[11]

R. Garcia and C. Siewert, Viscous-slip, thermal-slip, and temperature-jump coefficients based on the linearized Boltzmann equation (and five kinetic models) with the Cercignani–Lampis boundary condition, European Journal of Mechanics-B/Fluids, 29 (2010), 181-191.   Google Scholar

[12]

Y. Guo, Bounded solutions for the Boltzmann equation, Quarterly of Applied Mathematics, 68 (2010), 143-148.  doi: 10.1090/S0033-569X-09-01180-4.  Google Scholar

[13]

Y. Guo, Decay and continuity of the Boltzmann equation in bounded domains, Archive for Rational Mechanics and Analysis, 197 (2010), 713-809.  doi: 10.1007/s00205-009-0285-y.  Google Scholar

[14]

Y. GuoC. KimD. Tonon and A. Trescases, BV-regularity of the Boltzmann equation in non-convex domains, Archive for Rational Mechanics and Analysis, 220 (2016), 1045-1093.  doi: 10.1007/s00205-015-0948-9.  Google Scholar

[15]

Y. GuoC. KimD. Tonon and A. Trescases, Regularity of the Boltzmann equation in convex domains, Inventiones Mathematicae, 207 (2017), 115-290.  doi: 10.1007/s00222-016-0670-8.  Google Scholar

[16]

C. Kim, Formation and propagation of discontinuity for Boltzmann equation in non-convex domains, Communications in Mathematical Physics, 308 (2011), 641-701.  doi: 10.1007/s00220-011-1355-1.  Google Scholar

[17]

C. Kim and D. Lee, Decay of the Boltzmann equation with the specular boundary condition in non-convex cylindrical domains, Archive for Rational Mechanics and Analysis, 230 (2018), 49-123.  doi: 10.1007/s00205-018-1241-5.  Google Scholar

[18]

C. Kim and D. Lee, The Boltzmann equation with specular boundary condition in convex domains, Communications on Pure and Applied Mathematics, 71 (2018), 411-504.  doi: 10.1002/cpa.21705.  Google Scholar

[19]

R. Knackfuss and L. Barichello, Surface effects in rarefied gas dynamics: An analysis based on the Cercignani–Lampis boundary condition, European Journal of Mechanics-B/Fluids, 25 (2006), 113-129.  doi: 10.1016/j.euromechflu.2005.04.003.  Google Scholar

[20]

R. Knackfuss and L. Barichello, On the temperature-jump problem in rarefied gas dynamics: The effect of the Cercignani–Lampis boundary condition, SIAM Journal on Applied Mathematics, 66 (2006), 2149-2186.  doi: 10.1137/050643209.  Google Scholar

[21]

R. Lord, Some extensions to the Cercignani–Lampis gas–surface scattering kernel, Physics of Fluids A: Fluid Dynamics, 3 (1991), 706-710.  doi: 10.1063/1.858076.  Google Scholar

[22]

R. Lord, Some further extensions of the Cercignani–Lampis gas–surface interaction model, Physics of Fluids, 7 (1995), 1159-1161.  doi: 10.1063/1.868557.  Google Scholar

[23]

S. Lorenzani, Higher order slip according to the linearized Boltzmann equation with general boundary conditions, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369 (2011), 2228-2236.  doi: 10.1098/rsta.2011.0059.  Google Scholar

[24]

S. Mischler, Kinetic equations with Maxwell boundary conditions, Annales Scientifiques de l'Ecole Normale Superieure, 43 (2010), 719-760.  doi: 10.24033/asens.2132.  Google Scholar

[25]

F. Sharipov, Application of the Cercignani–Lampis scattering kernel to calculations of rarefied gas flows. Ⅰ. Plane flow between two parallel plates, European Journal of Mechanics-B/Fluids, 21 (2002), 113-123.  doi: 10.1016/S0997-7546(01)01160-8.  Google Scholar

[26]

F. Sharipov, Application of the Cercignani–Lampis scattering kernel to calculations of rarefied gas flows. Ⅱ. Slip and jump coefficients, European Journal of Mechanics-B/Fluids, 22 (2003), 133-143.  doi: 10.1016/S0997-7546(03)00017-7.  Google Scholar

[27]

F. Sharipov, Application of the Cercignani–Lampis scattering kernel to calculations of rarefied gas flows. Ⅲ. Poiseuille flow and thermal creep through a long tube, European Journal of Mechanics-B/Fluids, 22 (2003), 145-154.  doi: 10.1016/S0997-7546(03)00018-9.  Google Scholar

[28]

C. Siewert, Generalized boundary conditions for the S-model kinetic equations basic to flow in a plane channel, Journal of Quantitative Spectroscopy and Radiative Transfer, 72 (2002), 75-88.  doi: 10.1016/S0022-4073(01)00057-7.  Google Scholar

[29]

C. Siewert, Viscous-slip, thermal-slip, and temperature-jump coefficients as defined by the linearized Boltzmann equation and the Cercignani–Lampis boundary condition, Physics of Fluids, 15 (2003), 1696-1701.  doi: 10.1063/1.1567284.  Google Scholar

[30]

M. Woronwicz and D. Rault, Cercignani-lampis-lord gas surface interaction model-comparisons between theory and simulation, Journal of Spacecraft and Rockets, 31 (1994), 532-534.  doi: 10.2514/3.26474.  Google Scholar

show all references

References:
[1]

Y. CaoC. Kim and D. Lee, Global strong solutions of the Vlasov–Poisson–Boltzmann system in bounded domains, Archive for Rational Mechanics and Analysis, 233 (2019), 1027-1130.  doi: 10.1007/s00205-019-01374-9.  Google Scholar

[2]

C. Cercignani, The boltzmann equation, in The Boltzmann Equation and Its Applications, Springer, (1988), 40–103. doi: 10.1007/978-1-4612-1039-9.  Google Scholar

[3]

C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer Science & Business Media, 2013. Google Scholar

[4]

C. Cercignani and M. Lampis, Kinetic models for gas-surface interactions, transport Theory and Statistical Physics, 1 (1971), 101-114.  doi: 10.1080/00411457108231440.  Google Scholar

[5]

H. Chen, C. Kim and Q. Li, Local Well-posedness of Vlasov-Poisson-Boltzmann Equation with Generalized Diffuse Boundary Condition, submitted. Google Scholar

[6]

T. Cowling, On the Cercignani-Lampis formula for gas-surface interactions, Journal of Physics D: Applied Physics, 7 (1974), 781-785.   Google Scholar

[7]

R. DuanF. HuangY. Wang and Z. Zhang, Effects of soft interaction and non-isothermal boundary upon long-time dynamics of rarefied gas, Archive for Rational Mechanics and Analysis, 234 (2019), 925-1006.  doi: 10.1007/s00205-019-01405-5.  Google Scholar

[8]

R. EspositoY. GuoC. Kim and R. Marra, Non-isothermal boundary in the Boltzmann theory and Fourier law, Communications in Mathematical Physics, 323 (2013), 177-239.  doi: 10.1007/s00220-013-1766-2.  Google Scholar

[9]

R. Esposito, Y. Guo, C. Kim and R. Marra, Stationary solutions to the Boltzmann equation in the hydrodynamic limit, Annals of PDE, 4 (2018), Art. 1,119 pp. doi: 10.1007/s40818-017-0037-5.  Google Scholar

[10]

R. Garcia and C. Siewert, The linearized Boltzmann equation with Cercignani–Lampis boundary conditions: Basic flow problems in a plane channel, European Journal of Mechanics-B/Fluids, 28 (2009), 387-396.  doi: 10.1016/j.euromechflu.2008.12.001.  Google Scholar

[11]

R. Garcia and C. Siewert, Viscous-slip, thermal-slip, and temperature-jump coefficients based on the linearized Boltzmann equation (and five kinetic models) with the Cercignani–Lampis boundary condition, European Journal of Mechanics-B/Fluids, 29 (2010), 181-191.   Google Scholar

[12]

Y. Guo, Bounded solutions for the Boltzmann equation, Quarterly of Applied Mathematics, 68 (2010), 143-148.  doi: 10.1090/S0033-569X-09-01180-4.  Google Scholar

[13]

Y. Guo, Decay and continuity of the Boltzmann equation in bounded domains, Archive for Rational Mechanics and Analysis, 197 (2010), 713-809.  doi: 10.1007/s00205-009-0285-y.  Google Scholar

[14]

Y. GuoC. KimD. Tonon and A. Trescases, BV-regularity of the Boltzmann equation in non-convex domains, Archive for Rational Mechanics and Analysis, 220 (2016), 1045-1093.  doi: 10.1007/s00205-015-0948-9.  Google Scholar

[15]

Y. GuoC. KimD. Tonon and A. Trescases, Regularity of the Boltzmann equation in convex domains, Inventiones Mathematicae, 207 (2017), 115-290.  doi: 10.1007/s00222-016-0670-8.  Google Scholar

[16]

C. Kim, Formation and propagation of discontinuity for Boltzmann equation in non-convex domains, Communications in Mathematical Physics, 308 (2011), 641-701.  doi: 10.1007/s00220-011-1355-1.  Google Scholar

[17]

C. Kim and D. Lee, Decay of the Boltzmann equation with the specular boundary condition in non-convex cylindrical domains, Archive for Rational Mechanics and Analysis, 230 (2018), 49-123.  doi: 10.1007/s00205-018-1241-5.  Google Scholar

[18]

C. Kim and D. Lee, The Boltzmann equation with specular boundary condition in convex domains, Communications on Pure and Applied Mathematics, 71 (2018), 411-504.  doi: 10.1002/cpa.21705.  Google Scholar

[19]

R. Knackfuss and L. Barichello, Surface effects in rarefied gas dynamics: An analysis based on the Cercignani–Lampis boundary condition, European Journal of Mechanics-B/Fluids, 25 (2006), 113-129.  doi: 10.1016/j.euromechflu.2005.04.003.  Google Scholar

[20]

R. Knackfuss and L. Barichello, On the temperature-jump problem in rarefied gas dynamics: The effect of the Cercignani–Lampis boundary condition, SIAM Journal on Applied Mathematics, 66 (2006), 2149-2186.  doi: 10.1137/050643209.  Google Scholar

[21]

R. Lord, Some extensions to the Cercignani–Lampis gas–surface scattering kernel, Physics of Fluids A: Fluid Dynamics, 3 (1991), 706-710.  doi: 10.1063/1.858076.  Google Scholar

[22]

R. Lord, Some further extensions of the Cercignani–Lampis gas–surface interaction model, Physics of Fluids, 7 (1995), 1159-1161.  doi: 10.1063/1.868557.  Google Scholar

[23]

S. Lorenzani, Higher order slip according to the linearized Boltzmann equation with general boundary conditions, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369 (2011), 2228-2236.  doi: 10.1098/rsta.2011.0059.  Google Scholar

[24]

S. Mischler, Kinetic equations with Maxwell boundary conditions, Annales Scientifiques de l'Ecole Normale Superieure, 43 (2010), 719-760.  doi: 10.24033/asens.2132.  Google Scholar

[25]

F. Sharipov, Application of the Cercignani–Lampis scattering kernel to calculations of rarefied gas flows. Ⅰ. Plane flow between two parallel plates, European Journal of Mechanics-B/Fluids, 21 (2002), 113-123.  doi: 10.1016/S0997-7546(01)01160-8.  Google Scholar

[26]

F. Sharipov, Application of the Cercignani–Lampis scattering kernel to calculations of rarefied gas flows. Ⅱ. Slip and jump coefficients, European Journal of Mechanics-B/Fluids, 22 (2003), 133-143.  doi: 10.1016/S0997-7546(03)00017-7.  Google Scholar

[27]

F. Sharipov, Application of the Cercignani–Lampis scattering kernel to calculations of rarefied gas flows. Ⅲ. Poiseuille flow and thermal creep through a long tube, European Journal of Mechanics-B/Fluids, 22 (2003), 145-154.  doi: 10.1016/S0997-7546(03)00018-9.  Google Scholar

[28]

C. Siewert, Generalized boundary conditions for the S-model kinetic equations basic to flow in a plane channel, Journal of Quantitative Spectroscopy and Radiative Transfer, 72 (2002), 75-88.  doi: 10.1016/S0022-4073(01)00057-7.  Google Scholar

[29]

C. Siewert, Viscous-slip, thermal-slip, and temperature-jump coefficients as defined by the linearized Boltzmann equation and the Cercignani–Lampis boundary condition, Physics of Fluids, 15 (2003), 1696-1701.  doi: 10.1063/1.1567284.  Google Scholar

[30]

M. Woronwicz and D. Rault, Cercignani-lampis-lord gas surface interaction model-comparisons between theory and simulation, Journal of Spacecraft and Rockets, 31 (1994), 532-534.  doi: 10.2514/3.26474.  Google Scholar

Figure 1.  Maxwell boundary condition with $ c = 1/2 $
Figure 2.  C-L boundary condition with $ r_\perp = r_\parallel = 1/2 $
Figure 3.  C-L boundary condition with $ r_\perp = r_\parallel = 1/10 $
Figure 4.  C-L boundary condition with $ r_\perp = r_\parallel = 1/30 $
[1]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[2]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[3]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020377

[4]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052

[5]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[6]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[7]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[8]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[9]

Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161

[10]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[11]

Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380

[12]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[13]

Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381

[14]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

[15]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[16]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[17]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[18]

Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349

[19]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[20]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (107)
  • HTML views (81)
  • Cited by (1)

Other articles
by authors

[Back to Top]