The Boltzmann equation is a fundamental kinetic equation that describes the dynamics of dilute gas. In this paper we study the local well-posedness of the Boltzmann equation in bounded domain with the Cercignani-Lampis boundary condition, which describes the intermediate reflection law between diffuse reflection and specular reflection via two accommodation coefficients. We prove the local-in-time well-posedness of the equation by establishing an $ L^\infty $ estimate. In particular, for the $ L^\infty $ bound we develop a new decomposition on the boundary term combining with repeated interaction through the characteristic. Moreover, under some constraints on the wall temperature and the accommodation coefficients, we construct a unique steady solution of the Boltzmann equation.
Citation: |
[1] |
Y. Cao, C. Kim and D. Lee, Global strong solutions of the Vlasov–Poisson–Boltzmann system in bounded domains, Archive for Rational Mechanics and Analysis, 233 (2019), 1027-1130.
doi: 10.1007/s00205-019-01374-9.![]() ![]() ![]() |
[2] |
C. Cercignani, The boltzmann equation, in The Boltzmann Equation and Its Applications, Springer, (1988), 40–103.
doi: 10.1007/978-1-4612-1039-9.![]() ![]() |
[3] |
C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer Science & Business Media, 2013.
![]() |
[4] |
C. Cercignani and M. Lampis, Kinetic models for gas-surface interactions, transport Theory and Statistical Physics, 1 (1971), 101-114.
doi: 10.1080/00411457108231440.![]() ![]() ![]() |
[5] |
H. Chen, C. Kim and Q. Li, Local Well-posedness of Vlasov-Poisson-Boltzmann Equation with Generalized Diffuse Boundary Condition, submitted.
![]() |
[6] |
T. Cowling, On the Cercignani-Lampis formula for gas-surface interactions, Journal of Physics D: Applied Physics, 7 (1974), 781-785.
![]() |
[7] |
R. Duan, F. Huang, Y. Wang and Z. Zhang, Effects of soft interaction and non-isothermal boundary upon long-time dynamics of rarefied gas, Archive for Rational Mechanics and Analysis, 234 (2019), 925-1006.
doi: 10.1007/s00205-019-01405-5.![]() ![]() ![]() |
[8] |
R. Esposito, Y. Guo, C. Kim and R. Marra, Non-isothermal boundary in the Boltzmann theory and Fourier law, Communications in Mathematical Physics, 323 (2013), 177-239.
doi: 10.1007/s00220-013-1766-2.![]() ![]() ![]() |
[9] |
R. Esposito, Y. Guo, C. Kim and R. Marra, Stationary solutions to the Boltzmann equation in the hydrodynamic limit, Annals of PDE, 4 (2018), Art. 1,119 pp.
doi: 10.1007/s40818-017-0037-5.![]() ![]() ![]() |
[10] |
R. Garcia and C. Siewert, The linearized Boltzmann equation with Cercignani–Lampis boundary conditions: Basic flow problems in a plane channel, European Journal of Mechanics-B/Fluids, 28 (2009), 387-396.
doi: 10.1016/j.euromechflu.2008.12.001.![]() ![]() ![]() |
[11] |
R. Garcia and C. Siewert, Viscous-slip, thermal-slip, and temperature-jump coefficients based on the linearized Boltzmann equation (and five kinetic models) with the Cercignani–Lampis boundary condition, European Journal of Mechanics-B/Fluids, 29 (2010), 181-191.
![]() |
[12] |
Y. Guo, Bounded solutions for the Boltzmann equation, Quarterly of Applied Mathematics, 68 (2010), 143-148.
doi: 10.1090/S0033-569X-09-01180-4.![]() ![]() ![]() |
[13] |
Y. Guo, Decay and continuity of the Boltzmann equation in bounded domains, Archive for Rational Mechanics and Analysis, 197 (2010), 713-809.
doi: 10.1007/s00205-009-0285-y.![]() ![]() ![]() |
[14] |
Y. Guo, C. Kim, D. Tonon and A. Trescases, BV-regularity of the Boltzmann equation in non-convex domains, Archive for Rational Mechanics and Analysis, 220 (2016), 1045-1093.
doi: 10.1007/s00205-015-0948-9.![]() ![]() ![]() |
[15] |
Y. Guo, C. Kim, D. Tonon and A. Trescases, Regularity of the Boltzmann equation in convex domains, Inventiones Mathematicae, 207 (2017), 115-290.
doi: 10.1007/s00222-016-0670-8.![]() ![]() ![]() |
[16] |
C. Kim, Formation and propagation of discontinuity for Boltzmann equation in non-convex domains, Communications in Mathematical Physics, 308 (2011), 641-701.
doi: 10.1007/s00220-011-1355-1.![]() ![]() ![]() |
[17] |
C. Kim and D. Lee, Decay of the Boltzmann equation with the specular boundary condition in non-convex cylindrical domains, Archive for Rational Mechanics and Analysis, 230 (2018), 49-123.
doi: 10.1007/s00205-018-1241-5.![]() ![]() ![]() |
[18] |
C. Kim and D. Lee, The Boltzmann equation with specular boundary condition in convex domains, Communications on Pure and Applied Mathematics, 71 (2018), 411-504.
doi: 10.1002/cpa.21705.![]() ![]() ![]() |
[19] |
R. Knackfuss and L. Barichello, Surface effects in rarefied gas dynamics: An analysis based on the Cercignani–Lampis boundary condition, European Journal of Mechanics-B/Fluids, 25 (2006), 113-129.
doi: 10.1016/j.euromechflu.2005.04.003.![]() ![]() ![]() |
[20] |
R. Knackfuss and L. Barichello, On the temperature-jump problem in rarefied gas dynamics: The effect of the Cercignani–Lampis boundary condition, SIAM Journal on Applied Mathematics, 66 (2006), 2149-2186.
doi: 10.1137/050643209.![]() ![]() ![]() |
[21] |
R. Lord, Some extensions to the Cercignani–Lampis gas–surface scattering kernel, Physics of Fluids A: Fluid Dynamics, 3 (1991), 706-710.
doi: 10.1063/1.858076.![]() ![]() |
[22] |
R. Lord, Some further extensions of the Cercignani–Lampis gas–surface interaction model, Physics of Fluids, 7 (1995), 1159-1161.
doi: 10.1063/1.868557.![]() ![]() |
[23] |
S. Lorenzani, Higher order slip according to the linearized Boltzmann equation with general boundary conditions, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369 (2011), 2228-2236.
doi: 10.1098/rsta.2011.0059.![]() ![]() ![]() |
[24] |
S. Mischler, Kinetic equations with Maxwell boundary conditions, Annales Scientifiques de l'Ecole Normale Superieure, 43 (2010), 719-760.
doi: 10.24033/asens.2132.![]() ![]() ![]() |
[25] |
F. Sharipov, Application of the Cercignani–Lampis scattering kernel to calculations of rarefied gas flows. Ⅰ. Plane flow between two parallel plates, European Journal of Mechanics-B/Fluids, 21 (2002), 113-123.
doi: 10.1016/S0997-7546(01)01160-8.![]() ![]() ![]() |
[26] |
F. Sharipov, Application of the Cercignani–Lampis scattering kernel to calculations of rarefied gas flows. Ⅱ. Slip and jump coefficients, European Journal of Mechanics-B/Fluids, 22 (2003), 133-143.
doi: 10.1016/S0997-7546(03)00017-7.![]() ![]() ![]() |
[27] |
F. Sharipov, Application of the Cercignani–Lampis scattering kernel to calculations of rarefied gas flows. Ⅲ. Poiseuille flow and thermal creep through a long tube, European Journal of Mechanics-B/Fluids, 22 (2003), 145-154.
doi: 10.1016/S0997-7546(03)00018-9.![]() ![]() ![]() |
[28] |
C. Siewert, Generalized boundary conditions for the S-model kinetic equations basic to flow in a plane channel, Journal of Quantitative Spectroscopy and Radiative Transfer, 72 (2002), 75-88.
doi: 10.1016/S0022-4073(01)00057-7.![]() ![]() |
[29] |
C. Siewert, Viscous-slip, thermal-slip, and temperature-jump coefficients as defined by the linearized Boltzmann equation and the Cercignani–Lampis boundary condition, Physics of Fluids, 15 (2003), 1696-1701.
doi: 10.1063/1.1567284.![]() ![]() ![]() |
[30] |
M. Woronwicz and D. Rault, Cercignani-lampis-lord gas surface interaction model-comparisons between theory and simulation, Journal of Spacecraft and Rockets, 31 (1994), 532-534.
doi: 10.2514/3.26474.![]() ![]() |