\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Cercignani-Lampis boundary in the Boltzmann theory

Abstract Full Text(HTML) Figure(4) Related Papers Cited by
  • The Boltzmann equation is a fundamental kinetic equation that describes the dynamics of dilute gas. In this paper we study the local well-posedness of the Boltzmann equation in bounded domain with the Cercignani-Lampis boundary condition, which describes the intermediate reflection law between diffuse reflection and specular reflection via two accommodation coefficients. We prove the local-in-time well-posedness of the equation by establishing an $ L^\infty $ estimate. In particular, for the $ L^\infty $ bound we develop a new decomposition on the boundary term combining with repeated interaction through the characteristic. Moreover, under some constraints on the wall temperature and the accommodation coefficients, we construct a unique steady solution of the Boltzmann equation.

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Maxwell boundary condition with $ c = 1/2 $

    Figure 2.  C-L boundary condition with $ r_\perp = r_\parallel = 1/2 $

    Figure 3.  C-L boundary condition with $ r_\perp = r_\parallel = 1/10 $

    Figure 4.  C-L boundary condition with $ r_\perp = r_\parallel = 1/30 $

  • [1] Y. CaoC. Kim and D. Lee, Global strong solutions of the Vlasov–Poisson–Boltzmann system in bounded domains, Archive for Rational Mechanics and Analysis, 233 (2019), 1027-1130.  doi: 10.1007/s00205-019-01374-9.
    [2] C. Cercignani, The boltzmann equation, in The Boltzmann Equation and Its Applications, Springer, (1988), 40–103. doi: 10.1007/978-1-4612-1039-9.
    [3] C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer Science & Business Media, 2013.
    [4] C. Cercignani and M. Lampis, Kinetic models for gas-surface interactions, transport Theory and Statistical Physics, 1 (1971), 101-114.  doi: 10.1080/00411457108231440.
    [5] H. Chen, C. Kim and Q. Li, Local Well-posedness of Vlasov-Poisson-Boltzmann Equation with Generalized Diffuse Boundary Condition, submitted.
    [6] T. Cowling, On the Cercignani-Lampis formula for gas-surface interactions, Journal of Physics D: Applied Physics, 7 (1974), 781-785. 
    [7] R. DuanF. HuangY. Wang and Z. Zhang, Effects of soft interaction and non-isothermal boundary upon long-time dynamics of rarefied gas, Archive for Rational Mechanics and Analysis, 234 (2019), 925-1006.  doi: 10.1007/s00205-019-01405-5.
    [8] R. EspositoY. GuoC. Kim and R. Marra, Non-isothermal boundary in the Boltzmann theory and Fourier law, Communications in Mathematical Physics, 323 (2013), 177-239.  doi: 10.1007/s00220-013-1766-2.
    [9] R. Esposito, Y. Guo, C. Kim and R. Marra, Stationary solutions to the Boltzmann equation in the hydrodynamic limit, Annals of PDE, 4 (2018), Art. 1,119 pp. doi: 10.1007/s40818-017-0037-5.
    [10] R. Garcia and C. Siewert, The linearized Boltzmann equation with Cercignani–Lampis boundary conditions: Basic flow problems in a plane channel, European Journal of Mechanics-B/Fluids, 28 (2009), 387-396.  doi: 10.1016/j.euromechflu.2008.12.001.
    [11] R. Garcia and C. Siewert, Viscous-slip, thermal-slip, and temperature-jump coefficients based on the linearized Boltzmann equation (and five kinetic models) with the Cercignani–Lampis boundary condition, European Journal of Mechanics-B/Fluids, 29 (2010), 181-191. 
    [12] Y. Guo, Bounded solutions for the Boltzmann equation, Quarterly of Applied Mathematics, 68 (2010), 143-148.  doi: 10.1090/S0033-569X-09-01180-4.
    [13] Y. Guo, Decay and continuity of the Boltzmann equation in bounded domains, Archive for Rational Mechanics and Analysis, 197 (2010), 713-809.  doi: 10.1007/s00205-009-0285-y.
    [14] Y. GuoC. KimD. Tonon and A. Trescases, BV-regularity of the Boltzmann equation in non-convex domains, Archive for Rational Mechanics and Analysis, 220 (2016), 1045-1093.  doi: 10.1007/s00205-015-0948-9.
    [15] Y. GuoC. KimD. Tonon and A. Trescases, Regularity of the Boltzmann equation in convex domains, Inventiones Mathematicae, 207 (2017), 115-290.  doi: 10.1007/s00222-016-0670-8.
    [16] C. Kim, Formation and propagation of discontinuity for Boltzmann equation in non-convex domains, Communications in Mathematical Physics, 308 (2011), 641-701.  doi: 10.1007/s00220-011-1355-1.
    [17] C. Kim and D. Lee, Decay of the Boltzmann equation with the specular boundary condition in non-convex cylindrical domains, Archive for Rational Mechanics and Analysis, 230 (2018), 49-123.  doi: 10.1007/s00205-018-1241-5.
    [18] C. Kim and D. Lee, The Boltzmann equation with specular boundary condition in convex domains, Communications on Pure and Applied Mathematics, 71 (2018), 411-504.  doi: 10.1002/cpa.21705.
    [19] R. Knackfuss and L. Barichello, Surface effects in rarefied gas dynamics: An analysis based on the Cercignani–Lampis boundary condition, European Journal of Mechanics-B/Fluids, 25 (2006), 113-129.  doi: 10.1016/j.euromechflu.2005.04.003.
    [20] R. Knackfuss and L. Barichello, On the temperature-jump problem in rarefied gas dynamics: The effect of the Cercignani–Lampis boundary condition, SIAM Journal on Applied Mathematics, 66 (2006), 2149-2186.  doi: 10.1137/050643209.
    [21] R. Lord, Some extensions to the Cercignani–Lampis gas–surface scattering kernel, Physics of Fluids A: Fluid Dynamics, 3 (1991), 706-710.  doi: 10.1063/1.858076.
    [22] R. Lord, Some further extensions of the Cercignani–Lampis gas–surface interaction model, Physics of Fluids, 7 (1995), 1159-1161.  doi: 10.1063/1.868557.
    [23] S. Lorenzani, Higher order slip according to the linearized Boltzmann equation with general boundary conditions, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369 (2011), 2228-2236.  doi: 10.1098/rsta.2011.0059.
    [24] S. Mischler, Kinetic equations with Maxwell boundary conditions, Annales Scientifiques de l'Ecole Normale Superieure, 43 (2010), 719-760.  doi: 10.24033/asens.2132.
    [25] F. Sharipov, Application of the Cercignani–Lampis scattering kernel to calculations of rarefied gas flows. Ⅰ. Plane flow between two parallel plates, European Journal of Mechanics-B/Fluids, 21 (2002), 113-123.  doi: 10.1016/S0997-7546(01)01160-8.
    [26] F. Sharipov, Application of the Cercignani–Lampis scattering kernel to calculations of rarefied gas flows. Ⅱ. Slip and jump coefficients, European Journal of Mechanics-B/Fluids, 22 (2003), 133-143.  doi: 10.1016/S0997-7546(03)00017-7.
    [27] F. Sharipov, Application of the Cercignani–Lampis scattering kernel to calculations of rarefied gas flows. Ⅲ. Poiseuille flow and thermal creep through a long tube, European Journal of Mechanics-B/Fluids, 22 (2003), 145-154.  doi: 10.1016/S0997-7546(03)00018-9.
    [28] C. Siewert, Generalized boundary conditions for the S-model kinetic equations basic to flow in a plane channel, Journal of Quantitative Spectroscopy and Radiative Transfer, 72 (2002), 75-88.  doi: 10.1016/S0022-4073(01)00057-7.
    [29] C. Siewert, Viscous-slip, thermal-slip, and temperature-jump coefficients as defined by the linearized Boltzmann equation and the Cercignani–Lampis boundary condition, Physics of Fluids, 15 (2003), 1696-1701.  doi: 10.1063/1.1567284.
    [30] M. Woronwicz and D. Rault, Cercignani-lampis-lord gas surface interaction model-comparisons between theory and simulation, Journal of Spacecraft and Rockets, 31 (1994), 532-534.  doi: 10.2514/3.26474.
  • 加载中

Figures(4)

SHARE

Article Metrics

HTML views(465) PDF downloads(275) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return