In this paper, we are concerned with the construction of global-in-time solutions of the Cauchy problem of the Vlasov-Maxwell-Boltzmann system near Maxwellians with strong uniform background magnetic field. The background magnetic field under our consideration can be any given non-zero constant vector rather than vacuum in the previous results available up to now. Our analysis is motivated by the nonlinear energy method developed recently in [
Citation: |
[1] |
R. Adams, Sobolev Spaces, Pure and Applied Mathematics, Academic Press, New York-London, 1975.
![]() ![]() |
[2] |
R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Ⅰ, Global existence for soft potential,, J. Funct. Anal., 262 (2012), 915-1010.
doi: 10.1016/j.jfa.2011.10.007.![]() ![]() ![]() |
[3] |
K. Asano and S. Ukai, On the Vlasov-Poisson limit of the Vlasov-Maxwell equation. Patterns and waves., Stud. Math. Appl., 18 (1986), North-Holland, Amsterdam, 369–383.
doi: 10.1016/S0168-2024(08)70137-1.![]() ![]() ![]() |
[4] |
S. Chapman and T. G. Cowling, The Mathematical Theory of Non-uniform Gases. An account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, Third edition, prepared in co-operation with D. Burnett. Cambridge University Press, London, 1970.
![]() ![]() |
[5] |
R.-J. Duan, Global smooth dynamics of a fully ionized plasma with long-range collisions,, Ann. Inst. H. Poincar Anal. Non Linsaire, 31 (2014), 751-778.
doi: 10.1016/j.anihpc.2013.07.004.![]() ![]() ![]() |
[6] |
R.-J. Duan, Y.-J. Lei, T. Yang and H.-J. Zhao, The Vlasov-Maxwell-Boltzmann system near Maxwellians in the whole space with very soft potentials,, Comm. Math. Phys., 351 (2017), 95-153.
doi: 10.1007/s00220-017-2844-7.![]() ![]() ![]() |
[7] |
R.-J. Duan and S.-Q. Liu, The Vlasov-Poisson-Boltzmann system without angular cutoff,, Comm. Math. Phys., 324 (2013), 1-45.
doi: 10.1007/s00220-013-1807-x.![]() ![]() ![]() |
[8] |
R.-J. Duan, S.-Q. Liu, T. Yang and H.-J. Zhao, Stabilty of the nonrelativistic Vlasov-Maxwell-Boltzmann system for angular non-cutoff potentials,, Kinetic and Related Models, 6 (2013), 159-204.
doi: 10.3934/krm.2013.6.159.![]() ![]() ![]() |
[9] |
R.-J. Duan and R. M. Strain, Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space,, Comm. Pure. Appl. Math., 64 (2011), 1497-1546.
doi: 10.1002/cpa.20381.![]() ![]() ![]() |
[10] |
R.-J. Duan, T. Yang and H.-J. Zhao, The Vlasov-Poisson-Boltzmann system for soft potentials,, Math. Methods Models Appl. Sci., 23 (2013), 979-1028.
doi: 10.1142/S0218202513500012.![]() ![]() ![]() |
[11] |
Y.-Z. Fan, Y.-J. Lei, S.-Q. Liu and H.-J. Zhao, The non-cutoff Vlasov- Maxwell-Boltzmann system with weak angular singularity,, Science China Mathematics, 61 (2018), 111-136.
doi: 10.1007/s11425-016-9083-x.![]() ![]() ![]() |
[12] |
P. Ghendrih and A. Nouri, Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solutions, Preprint, 2018.
![]() |
[13] |
H. Grad, Asymptotic theory of the Boltzmann equation Ⅱ, Rarefied Gas Dynamics (Laurmann, J.A. Ed.), Academic Press, New York, 1 (1963), 26–59.
![]() ![]() |
[14] |
P. T. Gressman and R. M. Strain, Global classical solutions of the Boltzmann equation without angular cut-off,, J. Amer. Math. Soc., 24 (2011), 771-847.
doi: 10.1090/S0894-0347-2011-00697-8.![]() ![]() ![]() |
[15] |
Y. Guo, The Vlasov-Maxwell-Boltzmann system near Maxwellians,, Invent. Math., 153 (2003), 593-630.
doi: 10.1007/s00222-003-0301-z.![]() ![]() ![]() |
[16] |
Y. Guo, The Boltzmann equation in the whole space,, Indiana Univ. Math. J., 53 (2004), 1081-1094.
doi: 10.1512/iumj.2004.53.2574.![]() ![]() ![]() |
[17] |
Y. Guo, The Vlasov-Poisson-Laudau system in a periodic box,, J. Amer. Math. Soc., 25 (2012), 759-812.
doi: 10.1090/S0894-0347-2011-00722-4.![]() ![]() ![]() |
[18] |
Y. Guo and R. Strain, Momentum regularity and stability of the relativistic Vlasov-Maxwell-Boltzmann system,, Comm. Math. Phys., 310 (2012), 649-673.
doi: 10.1007/s00220-012-1417-z.![]() ![]() ![]() |
[19] |
Y. Guo and Y.-J. Wang, Decay of dissipative equation and negative sobolev spaces,, Comm.Partial Differential Equations, 37 (2012), 2165-2208.
doi: 10.1080/03605302.2012.696296.![]() ![]() ![]() |
[20] |
J. Jang, Vlasov-Maxwell-Boltzmann diffusive limit,, Arch. Ration. Mech. Anal., 194 (2009), 531-584.
doi: 10.1007/s00205-008-0169-6.![]() ![]() ![]() |
[21] |
N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics, McGraw-Hill, 1973.
![]() |
[22] |
Y.-J. Lei and H.-J. Zhao, Negative Sobolev spaces and the two-species Vlasov- Maxwell-Landau system in the whole space,, J. Funct. Anal., 267 (2014), 3710-3757.
doi: 10.1016/j.jfa.2014.09.011.![]() ![]() ![]() |
[23] |
Y.-J. Lei, L.-J. Xiong and H.-J. Zhao, One-species Vlasov-Poisson-Landau system near Maxwellians in the whole space,, Kinet. Relat. Models, 7 (2014), 551-590.
doi: 10.3934/krm.2014.7.551.![]() ![]() ![]() |
[24] |
T.-P. Liu, T. Yang and S.-H. Yu, Energy method for the Boltzmann equation,, Physica D, 188 (2004), 178-192.
doi: 10.1016/j.physd.2003.07.011.![]() ![]() ![]() |
[25] |
T.-P. Liu and S.-H. Yu, Boltzmann equation: Micro-macro decompositions and positivity of shock profiles,, Commun. Math. Phys., 246 (2004), 133-179.
doi: 10.1007/s00220-003-1030-2.![]() ![]() ![]() |
[26] |
M. Stein Elias, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970.
![]() ![]() |
[27] |
R. M. Strain, The Vlasov-Maxwell-Boltzmann system in the whole space,, Comm. Math. Phys., 268 (2006), 543-567.
doi: 10.1007/s00220-006-0109-y.![]() ![]() ![]() |
[28] |
R. M. Strain and Y. Guo, Stability of the relativistic Maxwellian in a collisional plasma,, Comm. Math. Phys., 251 (2004), 263-320.
doi: 10.1007/s00220-004-1151-2.![]() ![]() ![]() |
[29] |
R. M. Strain and Y. Guo, Exponential decay for soft potentials near Maxwellian,, Arch. Ration. Mech. Anal., 187 (2008), 287-339.
doi: 10.1007/s00205-007-0067-3.![]() ![]() ![]() |
[30] |
R. M. Strain and K.-Y. Zhu, The Vlasov-Poisson-Landau system in ${\mathbb{R}}^3_x$,, Arch. Ration. Mech. Anal., 210 (2013), 615-671.
doi: 10.1007/s00205-013-0658-0.![]() ![]() ![]() |
[31] |
C. Villani, A review of mathematical topics in collisional kinetic theory, North-Holland, Amsterdam, Handbook of Mathematical Fluid Dynamics, 1 (2002), 71-305.
![]() ![]() |
[32] |
Y.-J. Wang, Golobal solution and time decay of the Vlasov-Poisson-Landau System in ${\mathbb{R}}^3_x$,, SIAM J. Math. Anal., 44 (2012), 3281-3323.
doi: 10.1137/120879129.![]() ![]() ![]() |
[33] |
L.-S. Wang, Q.-H. Xiao, L.-J. Xiong and H.-J. Zhao, The Vlasov-Poisson-Boltzmann system near Maxwellians for long-range interactions,, Acta Math. Sci. Ser. B (Engl. Ed.), 36 (2016), 1049-1097.
doi: 10.1016/S0252-9602(16)30057-1.![]() ![]() ![]() |
[34] |
Q.-H. Xiao, L.-J. Xiong and H.-J. Zhao, The Vlasov-Posson-Boltzmann system with angular cutoff for soft potential,, J. Differential Equations, 255 (2013), 1196-1232.
doi: 10.1016/j.jde.2013.05.005.![]() ![]() ![]() |
[35] |
Q.-H. Xiao, L.-J. Xiong and H.-J. Zhao, The Vlasov-Poisson-Boltzmann system for non-cutoff hard potentials,, Sci. China Math., 57 (2014), 515-540.
doi: 10.1007/s11425-013-4712-z.![]() ![]() ![]() |
[36] |
Q.-H. Xiao, L.-J. Xiong and H.-J. Zhao, The Vlasov-Posson-Boltzmann system for the whole range of cutoff soft potentials,, J. Funct. Anal., 272 (2017), 166-226.
doi: 10.1016/j.jfa.2016.09.017.![]() ![]() ![]() |