August  2020, 13(4): 653-676. doi: 10.3934/krm.2020022

On the Cucker-Smale ensemble with $ q $-closest neighbors under time-delayed communications

1. 

School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

2. 

Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul 08826

3. 

School of Mathematics, Korea Institute for Advanced Study, Seoul 02455, South Korea

* Corresponding author: Doheon Kim

Received  May 2019 Revised  March 2020 Published  May 2020

Fund Project: The work of S.-Y. Ha was supported by the National Research Foundation of Korea(NRF-2020R1A2C3A01003881), and the work of D. Kim was supported by a KIAS Individual Grant (MG073901) at Korea Institute for Advanced Study

We study time-asymptotic interplay between time-delayed communication and Cucker-Smale (C-S) velocity alignment. For this, we present two sufficient frameworks for the asymptotic flocking to the continuous and discrete C-S models with $ q $-closest neighbors in the presence of time-delayed communications. Communication time-delays result from the finite-propagation speed of information and they are often ignored in the first place modeling of collective dynamics. In the absence of time-delays in communication, Cucker and Dong showed that the C-S model with $ q $-closest neighbors can exhibit a phase-transition like phenomenon for unconditional and conditional flockings depending on the size $ q $ relative to system size. In this paper, we investigate whether Cucker and Dong's result is robust with respect to the time-delayed communications or not. In fact, our flocking estimates show that the critical number of $ q $ for unconditional flocking is the same as in the case for zero time-delay, which shows the robustness of the Cucker and Dong's result with respect to small time-delay.

Citation: Jiu-Gang Dong, Seung-Yeal Ha, Doheon Kim. On the Cucker-Smale ensemble with $ q $-closest neighbors under time-delayed communications. Kinetic & Related Models, 2020, 13 (4) : 653-676. doi: 10.3934/krm.2020022
References:
[1]

S. M. Ahn and S.-Y. Ha, Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises, J. Math. Phys., 51 (2010), 103301, 17 pp. doi: 10.1063/1.3496895.  Google Scholar

[2]

S. M. AhnH. ChoiS.-Y. Ha and H. Lee, On the collision avoiding initial-configurations to the Cucker-Smale type flocking models, Commun. Math. Sci., 10 (2012), 625-643.  doi: 10.4310/CMS.2012.v10.n2.a10.  Google Scholar

[3]

M. AouchicheO. Favaron and P. Hansen, Variable neighborhood search for extremal graphs. XXII. Extending bounds for independence to upper irredundance, Discrete Appl. Math., 157 (2009), 3497-3510.  doi: 10.1016/j.dam.2009.04.004.  Google Scholar

[4]

M. BalleriniN. CabibboR. CandelierA. CavagnaE. CisbaniI. GiardinaV. LecomteA. OrlandiG. ParisiA. ProcacciniM. Viale and V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study, Proc. Natl. Acad. Sci. U. S. A., 105 (2008), 1232-1237.  doi: 10.1073/pnas.0711437105.  Google Scholar

[5]

N. Bellomo and S.-Y. Ha, A quest toward a mathematical theory of the dynamics of swarms, Math. Models Methods Appl. Sci., 27 (2017), 745-770.  doi: 10.1142/S0218202517500154.  Google Scholar

[6]

A. Blanchet and P. Degond, Topological interactions in a Boltzmann-type framework, J. Stat. Phys., 163 (2016), 41-60.  doi: 10.1007/s10955-016-1471-6.  Google Scholar

[7]

F. BolleyJ. A. Cañizo and J. A. Carrillo, Stochastic mean-field limit: Non-Lipschitz forces and swarming, Math. Models Methods Appl. Sci., 21 (2011), 2179-2210.  doi: 10.1142/S0218202511005702.  Google Scholar

[8]

M. CamperiA. CavagaI. GiardinaG. Parisi and E. Silvestri, Spatially balanced topological interaction grants optimal cohesion in flocking models, Interface Focus, 2 (2012), 715-725.  doi: 10.1098/rsfs.2012.0026.  Google Scholar

[9]

J. A. CañizoJ. A. Carrillo and J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion, Math. Models Methods Appl. Sci., 21 (2011), 515-539.  doi: 10.1142/S0218202511005131.  Google Scholar

[10]

Y.-P. Choi and J. Haskovec, Hydrodynamic Cucker-Smale model with normalized communication weights and time delay, SIAM J. Math. Anal., 51 (2019), 2660-2685.  doi: 10.1137/17M1139151.  Google Scholar

[11]

Y.-P. Choi and J. Haskovec, Cucker-Smale model with normalized communication weights and time delay, Kinet. Relat. Models, 10 (2017), 1011-1033.  doi: 10.3934/krm.2017040.  Google Scholar

[12]

Y.-P. Choi and Z. Li, Emergent behavior of Cucker-Smale flocking particles with heterogeneous time delays, Appl. Math. Lett., 86 (2018), 49-56.  doi: 10.1016/j.aml.2018.06.018.  Google Scholar

[13]

F. Cucker and J.-G. Dong, Avoiding collisions in flocks, IEEE Trans. Automat. Control, 55 (2010), 1238-1243.  doi: 10.1109/TAC.2010.2042355.  Google Scholar

[14]

F. Cucker and J.-G. Dong, On flocks influenced by closest neighbors, Math. Models Methods Appl. Sci., 26 (2016), 2685-2708.  doi: 10.1142/S0218202516500639.  Google Scholar

[15]

F. Cucker and E. Mordecki, Flocking in noisy environments, J. Math. Pures Appl., 89 (2008), 278-296.  doi: 10.1016/j.matpur.2007.12.002.  Google Scholar

[16]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[17]

J.-G. DongS.-Y Ha and D. Kim, Interplay of time-delay and velocity alignment in the Cucker-Smale model on a general digraph, Discrete Contin. Dyn. Syst. Ser. B., 24 (2019), 5569-5596.  doi: 10.3934/dcdsb.2019072.  Google Scholar

[18]

J.-G. Dong and L. Qiu, Flocking of the Cucker-Smale model on general digraphs, IEEE Trans. Automat. Control, 62 (2017), 5234-5239.  doi: 10.1109/TAC.2016.2631608.  Google Scholar

[19]

R. ErbanJ. Haskovec and Y. Sun, On Cucker-Smale model with noise and delay, SIAM. J. Appl. Math., 76 (2016), 1535-1557.  doi: 10.1137/15M1030467.  Google Scholar

[20]

S.-Y. HaK. Lee and D. Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469.  doi: 10.4310/CMS.2009.v7.n2.a9.  Google Scholar

[21]

J. Haskovec, Flocking dynamics and mean-field limit in the Cucker-Smale-type model with topological interactions, Phys. D, 261 (2013), 42-51.  doi: 10.1016/j.physd.2013.06.006.  Google Scholar

[22]

Z. Li and X. Xue, Cucker-Smale flocking under rooted leadership with fixed and switching topologies, SIAM J. Appl. Math., 70 (2010), 3156-3174.  doi: 10.1137/100791774.  Google Scholar

[23]

Y. Liu and J. Wu, Flocking and asymptotic velocity of the Cucker-Smale model with processing delay, J. Math. Anal. Appl., 415 (2014), 53-61.  doi: 10.1016/j.jmaa.2014.01.036.  Google Scholar

[24]

S. Martin, Multi-agent flocking under topological interactions, Systems Control Lett., 69 (2014), 53-61.  doi: 10.1016/j.sysconle.2014.04.004.  Google Scholar

[25]

R. Olfati-Saber and R. M. Murray, Consensus problems in networks of agents with switching topology and time-delays, IEEE Trans. Automat. Control, 49 (2004), 1520-1533.  doi: 10.1109/TAC.2004.834113.  Google Scholar

[26]

L. PereaP. Elosegui and G. Gómez, Extension of the Cucker-Smale control law to space fight formations, J. Guidance Contr. Dyn., 32 (2009), 526-536.  doi: 10.2514/1.36269.  Google Scholar

[27]

C. Pignotti and I. Reche Vallejo, Flocking estimates for the Cucker-Smale model with time lag and hierarchical leadership, J. Math. Anal. Appl., 464 (2018), 1313-1332.  doi: 10.1016/j.jmaa.2018.04.070.  Google Scholar

[28]

J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2007/08), 694-719.  doi: 10.1137/060673254.  Google Scholar

[29]

C. Virágh, G. Vásárhelyi, N. Tarcai, T. Szörényi, G. Somorjai, T. Nepusz, and T. Vicsek, Flocking algorithm for autonomous flying robots, Bioinspir. Biomim., 9 (2014), 025012. doi: 10.1088/1748-3182/9/2/025012.  Google Scholar

[30]

G. Vásárhelyi, C. Virágh, G. Somorjai, N. Tarcai, T. Szörényi, T. Nepusz, and T. Vicsek, Outdoor flocking and formation flight with autonomous aerial robots, in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Chicago, IL, 2014, 3866–3873. doi: 10.1109/IROS.2014.6943105.  Google Scholar

[31]

T. VicsekA. CzirókE. Ben-JacobI. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.  doi: 10.1103/PhysRevLett.75.1226.  Google Scholar

[32]

T. Vicsek and A. Zefeiris, Collective motion, Phys. Rep., 517 (2012), 71-140.  doi: 10.1016/j.physrep.2012.03.004.  Google Scholar

show all references

References:
[1]

S. M. Ahn and S.-Y. Ha, Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises, J. Math. Phys., 51 (2010), 103301, 17 pp. doi: 10.1063/1.3496895.  Google Scholar

[2]

S. M. AhnH. ChoiS.-Y. Ha and H. Lee, On the collision avoiding initial-configurations to the Cucker-Smale type flocking models, Commun. Math. Sci., 10 (2012), 625-643.  doi: 10.4310/CMS.2012.v10.n2.a10.  Google Scholar

[3]

M. AouchicheO. Favaron and P. Hansen, Variable neighborhood search for extremal graphs. XXII. Extending bounds for independence to upper irredundance, Discrete Appl. Math., 157 (2009), 3497-3510.  doi: 10.1016/j.dam.2009.04.004.  Google Scholar

[4]

M. BalleriniN. CabibboR. CandelierA. CavagnaE. CisbaniI. GiardinaV. LecomteA. OrlandiG. ParisiA. ProcacciniM. Viale and V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study, Proc. Natl. Acad. Sci. U. S. A., 105 (2008), 1232-1237.  doi: 10.1073/pnas.0711437105.  Google Scholar

[5]

N. Bellomo and S.-Y. Ha, A quest toward a mathematical theory of the dynamics of swarms, Math. Models Methods Appl. Sci., 27 (2017), 745-770.  doi: 10.1142/S0218202517500154.  Google Scholar

[6]

A. Blanchet and P. Degond, Topological interactions in a Boltzmann-type framework, J. Stat. Phys., 163 (2016), 41-60.  doi: 10.1007/s10955-016-1471-6.  Google Scholar

[7]

F. BolleyJ. A. Cañizo and J. A. Carrillo, Stochastic mean-field limit: Non-Lipschitz forces and swarming, Math. Models Methods Appl. Sci., 21 (2011), 2179-2210.  doi: 10.1142/S0218202511005702.  Google Scholar

[8]

M. CamperiA. CavagaI. GiardinaG. Parisi and E. Silvestri, Spatially balanced topological interaction grants optimal cohesion in flocking models, Interface Focus, 2 (2012), 715-725.  doi: 10.1098/rsfs.2012.0026.  Google Scholar

[9]

J. A. CañizoJ. A. Carrillo and J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion, Math. Models Methods Appl. Sci., 21 (2011), 515-539.  doi: 10.1142/S0218202511005131.  Google Scholar

[10]

Y.-P. Choi and J. Haskovec, Hydrodynamic Cucker-Smale model with normalized communication weights and time delay, SIAM J. Math. Anal., 51 (2019), 2660-2685.  doi: 10.1137/17M1139151.  Google Scholar

[11]

Y.-P. Choi and J. Haskovec, Cucker-Smale model with normalized communication weights and time delay, Kinet. Relat. Models, 10 (2017), 1011-1033.  doi: 10.3934/krm.2017040.  Google Scholar

[12]

Y.-P. Choi and Z. Li, Emergent behavior of Cucker-Smale flocking particles with heterogeneous time delays, Appl. Math. Lett., 86 (2018), 49-56.  doi: 10.1016/j.aml.2018.06.018.  Google Scholar

[13]

F. Cucker and J.-G. Dong, Avoiding collisions in flocks, IEEE Trans. Automat. Control, 55 (2010), 1238-1243.  doi: 10.1109/TAC.2010.2042355.  Google Scholar

[14]

F. Cucker and J.-G. Dong, On flocks influenced by closest neighbors, Math. Models Methods Appl. Sci., 26 (2016), 2685-2708.  doi: 10.1142/S0218202516500639.  Google Scholar

[15]

F. Cucker and E. Mordecki, Flocking in noisy environments, J. Math. Pures Appl., 89 (2008), 278-296.  doi: 10.1016/j.matpur.2007.12.002.  Google Scholar

[16]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[17]

J.-G. DongS.-Y Ha and D. Kim, Interplay of time-delay and velocity alignment in the Cucker-Smale model on a general digraph, Discrete Contin. Dyn. Syst. Ser. B., 24 (2019), 5569-5596.  doi: 10.3934/dcdsb.2019072.  Google Scholar

[18]

J.-G. Dong and L. Qiu, Flocking of the Cucker-Smale model on general digraphs, IEEE Trans. Automat. Control, 62 (2017), 5234-5239.  doi: 10.1109/TAC.2016.2631608.  Google Scholar

[19]

R. ErbanJ. Haskovec and Y. Sun, On Cucker-Smale model with noise and delay, SIAM. J. Appl. Math., 76 (2016), 1535-1557.  doi: 10.1137/15M1030467.  Google Scholar

[20]

S.-Y. HaK. Lee and D. Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469.  doi: 10.4310/CMS.2009.v7.n2.a9.  Google Scholar

[21]

J. Haskovec, Flocking dynamics and mean-field limit in the Cucker-Smale-type model with topological interactions, Phys. D, 261 (2013), 42-51.  doi: 10.1016/j.physd.2013.06.006.  Google Scholar

[22]

Z. Li and X. Xue, Cucker-Smale flocking under rooted leadership with fixed and switching topologies, SIAM J. Appl. Math., 70 (2010), 3156-3174.  doi: 10.1137/100791774.  Google Scholar

[23]

Y. Liu and J. Wu, Flocking and asymptotic velocity of the Cucker-Smale model with processing delay, J. Math. Anal. Appl., 415 (2014), 53-61.  doi: 10.1016/j.jmaa.2014.01.036.  Google Scholar

[24]

S. Martin, Multi-agent flocking under topological interactions, Systems Control Lett., 69 (2014), 53-61.  doi: 10.1016/j.sysconle.2014.04.004.  Google Scholar

[25]

R. Olfati-Saber and R. M. Murray, Consensus problems in networks of agents with switching topology and time-delays, IEEE Trans. Automat. Control, 49 (2004), 1520-1533.  doi: 10.1109/TAC.2004.834113.  Google Scholar

[26]

L. PereaP. Elosegui and G. Gómez, Extension of the Cucker-Smale control law to space fight formations, J. Guidance Contr. Dyn., 32 (2009), 526-536.  doi: 10.2514/1.36269.  Google Scholar

[27]

C. Pignotti and I. Reche Vallejo, Flocking estimates for the Cucker-Smale model with time lag and hierarchical leadership, J. Math. Anal. Appl., 464 (2018), 1313-1332.  doi: 10.1016/j.jmaa.2018.04.070.  Google Scholar

[28]

J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2007/08), 694-719.  doi: 10.1137/060673254.  Google Scholar

[29]

C. Virágh, G. Vásárhelyi, N. Tarcai, T. Szörényi, G. Somorjai, T. Nepusz, and T. Vicsek, Flocking algorithm for autonomous flying robots, Bioinspir. Biomim., 9 (2014), 025012. doi: 10.1088/1748-3182/9/2/025012.  Google Scholar

[30]

G. Vásárhelyi, C. Virágh, G. Somorjai, N. Tarcai, T. Szörényi, T. Nepusz, and T. Vicsek, Outdoor flocking and formation flight with autonomous aerial robots, in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Chicago, IL, 2014, 3866–3873. doi: 10.1109/IROS.2014.6943105.  Google Scholar

[31]

T. VicsekA. CzirókE. Ben-JacobI. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.  doi: 10.1103/PhysRevLett.75.1226.  Google Scholar

[32]

T. Vicsek and A. Zefeiris, Collective motion, Phys. Rep., 517 (2012), 71-140.  doi: 10.1016/j.physrep.2012.03.004.  Google Scholar

Figure 1.  The initial configuration $ ( {\boldsymbol{x}}_i, {\boldsymbol{v}}_i) $ $ (i = 1.\cdots,20) $
Figure 2.  The graphs of $ \mathcal D(V(t)) $ and $ \log \mathcal D(V(t)) $ for $ q = 9,10,11,12 $
Figure 3.  The graphs of $ \mathcal D(X(t)) $ and $ \log \mathcal D(X(t)) $ for $ q = 9,10,11,12 $
Figure 4.  Emergence of bi-cluster flocking for $ q = 9 $
[1]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[2]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[3]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[4]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[5]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[6]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[7]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[8]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[9]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[10]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357

[11]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[12]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[13]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[14]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[15]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[16]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[17]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[18]

Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109

[19]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[20]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (94)
  • HTML views (100)
  • Cited by (0)

Other articles
by authors

[Back to Top]