• Previous Article
    Angular moments models for rarefied gas dynamics. Numerical comparisons with kinetic and Navier-Stokes equations
  • KRM Home
  • This Issue
  • Next Article
    A Petrov-Galerkin spectral method for the inelastic Boltzmann equation using mapped Chebyshev functions
August  2020, 13(4): 703-737. doi: 10.3934/krm.2020024

Strong solutions for the Alber equation and stability of unidirectional wave spectra

1. 

Department of Mathematics, University of Dundee, Dundee DD1 4HN, UK

2. 

School of Naval Architecture and Marine Engineering, National Technical University of Athens, 9 Heroon Polytechniou str., Zographos 157 73, Athens, Greece

3. 

School of Mathematical & Computer Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK

4. 

Department of Mechanical Engineering, Massachusetts Institute of Technology, Room 5-318, 77 Massachusetts Av., Cambridge, MA 02139-4307, USA

* Corresponding author: Agissilaos G. Athanassoulis

Received  June 2019 Revised  January 2020 Published  May 2020

The Alber equation is a moment equation for the nonlinear Schrödinger equation, formally used in ocean engineering to investigate the stability of stationary and homogeneous sea states in terms of their power spectra. In this work we present the first well-posedness theory for the Alber equation with the help of an appropriate equivalent reformulation. Moreover, we show linear Landau damping in the sense that, under a stability condition on the homogeneous background, any inhomogeneities disperse and decay in time. The proof exploits novel $ L^2 $ space-time estimates to control the inhomogeneity and our result applies to any regular initial data (without a mean-zero restriction). Finally, the sufficient condition for stability is resolved, and the physical implications for ocean waves are discussed. Using a standard reference dataset (the "North Atlantic Scatter Diagram") it is found that the vast majority of sea states are stable, but modulationally unstable sea states do appear, with likelihood $ O(1/1000); $ these would be the prime breeding ground for rogue waves.

Citation: Agissilaos G. Athanassoulis, Gerassimos A. Athanassoulis, Mariya Ptashnyk, Themistoklis Sapsis. Strong solutions for the Alber equation and stability of unidirectional wave spectra. Kinetic & Related Models, 2020, 13 (4) : 703-737. doi: 10.3934/krm.2020024
References:
[1]

I. E. Alber, The effects of randomness on the stability of two-dimensional surface wavetrains, Proc. Roy. Soc. London Ser. A, 363 (1978), 525-546.  doi: 10.1098/rspa.1978.0181.  Google Scholar

[2]

D. Andrade, R. Stuhlmeier and M. Stiassnie, On the generalized kinetic equation for surface gravity waves, blow-up and its restraint, Fluids, 4 (2018), 2 pp. doi: 10.3390/fluids4010002.  Google Scholar

[3]

A. G. Athanassoulis, Exact equations for smoothed Wigner transforms and homogenization of wave propagation, Appl. Comput. Harmon. Anal., 24 (2008), 378-392.  doi: 10.1016/j.acha.2007.06.006.  Google Scholar

[4]

A. G. AthanassoulisG. A. Athanassoulis and T. Sapsis, Localized instabilities of the Wigner equation as a model for the emergence of rogue waves, J. Ocean Eng. Mar. Energy, 3 (2017), 353-372.  doi: 10.1007/s40722-017-0095-5.  Google Scholar

[5]

A. G. AthanassoulisN. J. Mauser and T. Paul, Coarse-scale representations and smoothed Wigner transforms, J. Math. Pures Appl., 91 (2009), 296-338.  doi: 10.1016/j.matpur.2009.01.001.  Google Scholar

[6]

J. BedrossianN. Masmoudi and C. Mouhot, Landau damping in finite regularity for unconfined systems with screened interactions, Comm. Pure Appl. Math., 71 (2018), 537-576.  doi: 10.1002/cpa.21730.  Google Scholar

[7]

T. B. Benjamin and J. E. Feir, The disintegration of wave trains on deep water Part 1. Theory, J. Fluid Mech., 27 (1967), 417-430.  doi: 10.1017/S002211206700045X.  Google Scholar

[8]

E. M. Bitner-Gregersen and O. Gramstad, DNV GL Strategic Reserach & Innovation position paper 05-2015: rogue waves: Impact on ships and offshore structures, 2015, online article: https://issuu.com/dnvgl/docs/rogue_waves_final/10. Google Scholar

[9]

T. ChenY. Hong and N. Pavlović, Global well-posedness of the NLS system for infinitely many fermions, Arch. Rational Mech. Anal., 224 (2017), 91-123.  doi: 10.1007/s00205-016-1068-x.  Google Scholar

[10]

W. Cousins and T. P. Sapsis, Reduced-order precursors of rare events in unidirectional nonlinear water waves, J. Fluid Mech., 790 (2016), 368-388.  doi: 10.1017/jfm.2016.13.  Google Scholar

[11]

G. DematteisT. Grafke and E. Vanden-Eijnden, Rogue waves and large deviations in deep sea, Proc. Natl. Acad. Sci. U. S. A., 115 (2018), 855-860.  doi: 10.1073/pnas.1710670115.  Google Scholar

[12]

R. Dubertrand and S. Müller, Spectral statistics of chaotic many-body systems, New J. Phys., 18 (2016), 033009. doi: 10.1088/1367-2630/18/3/033009.  Google Scholar

[13]

O. Gramstad, Modulational instability in JONSWAP sea states using the Alber equation, in Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering, Vol. 7B, Trondheim, Norway, 2017, 9 pp. doi: 10.1115/OMAE2017-61671.  Google Scholar

[14]

O. GramstadE. Bitner-GregersenK. Trulsen and J. C. Nieto Borge, Modulational instability and rogue waves in crossing sea states, J. Phys. Oceanogr., 48 (2018), 1317-1331.  doi: 10.1175/JPO-D-18-0006.1.  Google Scholar

[15]

J. HanH. LiuN. Huang and Z. Wang, Stochastic resonance based on modulation instability in spatiotemporal chaos, Opt. Express, 25 (2017), 8306-8314.  doi: 10.1364/OE.25.008306.  Google Scholar

[16]

K. Hasselmann, T. P. Barnett, E. Bouws, H. Carlson, D. E. Cartwright, K. Enke, J. A. Ewing, H. Gienapp, D. E. Hasselmann, P. Kruseman and A. Meerburg, Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Deut. Hydrogr. Z., 8 (1973). Google Scholar

[17]

P. A. E. M. Janssen, Nonlinear four-wave interactions and freak waves, J. Phys. Oceanogr., 33 (2003), 863-884.   Google Scholar

[18] G. J. KomenL. CavaleriM. DonelanK. HasselmannS. Hasselmann and P. A. E. M. Janssen, Dynamics and Modelling of Ocean Waves, Cambridge University Press, Cambridge, 1994.  doi: 10.1017/CBO9780511628955.  Google Scholar
[19]

M. Lewin and J. Sabin, The Hartree equation for infinitely many particles I. Well-posedness theory, Comm. Math. Phys., 334 (2015), 117-170.  doi: 10.1007/s00220-014-2098-6.  Google Scholar

[20]

M. Lewin and J. Sabin, The Hartree equation for infinitely many particles, Ⅱ: Dispersion and scattering in 2D, Anal. PDE, 7 (2014), 1339-1363.  doi: 10.2140/apde.2014.7.1339.  Google Scholar

[21]

C. Mouhot and C. Villani, On Landau damping, Acta Math., 207 (2011), 29-201.  doi: 10.1007/s11511-011-0068-9.  Google Scholar

[22] M. K. Ochi, Ocean Waves: The Stochastic Approach, Cambridge University Press, 1998.  doi: 10.1017/CBO9780511529559.  Google Scholar
[23]

M. Onorato, A. Osborne, R. Fedele and M. Serio, Landau damping and coherent structures in narrow-banded 1 + 1 deep water gravity waves, Phys. Rev. E, 67 (2003), 046305. doi: 10.1103/PhysRevE.67.046305.  Google Scholar

[24]

M. Onorato, A. R. Osborne and M. Serio, Modulational instability in crossing sea states: A possible mechanism for the formation of freak waves, Phys. Rev. Lett., 96 (2006), 014503. doi: 10.1103/PhysRevLett.96.014503.  Google Scholar

[25]

M. OnoratoS. ResidoriU. BortolozzoA. Montina and F. T. Arecchi, Rogue waves and their generating mechanisms in different physical contexts, Phys. Rep., 528 (2013), 47-89.  doi: 10.1016/j.physrep.2013.03.001.  Google Scholar

[26]

O. Penrose, Electrostatic instabilities of a uniform non-Maxwellian plasma, Phys. Fluids, 3 (1960), 258-265.  doi: 10.1063/1.1706024.  Google Scholar

[27]

I. S. Reed, On a moment theorem for complex gaussian processes, IRE Trans. Inf. Theory, 8 (1962), 194-195.  doi: 10.1109/TIT.1962.1057719.  Google Scholar

[28]

A. Ribal, On the Alber equation for random water waves, Ph.D thesis, Swinburne University of Technology, Melbourne, Australia, 2013. Google Scholar

[29]

A. RibalA. V. BabaninI. YoungA. Toffoli and M. Stiassnie, Recurrent solutions of the Alber equation initialized by Joint North Sea Wave Project spectra, J. Fluid Mech., 719 (2013), 314-344.  doi: 10.1017/jfm.2013.7.  Google Scholar

[30]

P. K. ShuklaM. Marklund and L. Stenflo, Modulational instability of nonlinearly interacting incoherent sea states, JETP Lett., 84 (2006), 645-649.  doi: 10.1134/S0021364006240039.  Google Scholar

[31]

J. N. SteerM. L. McallisterA. G. L. Borthwick and T. S. van der Bremer, Experimental observation of modulational instability in crossing surface gravity wavetrains, Fluids, 4 (2019), 1-15.  doi: 10.3390/fluids4020105.  Google Scholar

[32]

M. StiassnieA. Regev and Y. Agnon, Recurrent solutions of Alber's equation for random water-wave fields, J. Fluid Mech., 598 (2008), 245-266.  doi: 10.1017/S0022112007009998.  Google Scholar

[33]

R. Stuhlmeier and M. Stiassnie, Evolution of statistically inhomogeneous degenerate water wave quartets, Philos. Trans. Roy. Soc. A, 376 (2018), 20170101. doi: 10.1098/rsta.2017.0101.  Google Scholar

[34]

A.-S. de Suzzoni, An equation on random variables and systems of fermions, preprint, 2016, arXiv: 1507.06180. Google Scholar

[35]

P. Wahlberg, The random Wigner distribution of Gaussian stochastic processes with covariance in S0($\mathbb{R}$2d), J. Funct. Spaces Appl., 3 (2005), 163-181.  doi: 10.1155/2005/252415.  Google Scholar

[36]

H. C. Yuen and B. M. Lake, Nonlinear dynamics of deep-water gravity waves, Adv. in Appl. Mech., 22 (1982), 67-229.  doi: 10.1016/S0065-2156(08)70066-8.  Google Scholar

[37]

V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys., 9 (1968), 190-194.  doi: 10.1007/BF00913182.  Google Scholar

[38]

V. E. Zakharov and L. A. Ostrovsky, Modulation instability: The beginning, Phys. D, 238 (2009), 540-548.  doi: 10.1016/j.physd.2008.12.002.  Google Scholar

[39]

DNVGL-RP-C205: Environmental conditions and environmental loads, Recommended Practice report, 2017. Available from: https://oilgas.standards.dnvgl.com/download/dnvgl-rp-c205-environmental-conditions-and-environmental-loads. Google Scholar

show all references

References:
[1]

I. E. Alber, The effects of randomness on the stability of two-dimensional surface wavetrains, Proc. Roy. Soc. London Ser. A, 363 (1978), 525-546.  doi: 10.1098/rspa.1978.0181.  Google Scholar

[2]

D. Andrade, R. Stuhlmeier and M. Stiassnie, On the generalized kinetic equation for surface gravity waves, blow-up and its restraint, Fluids, 4 (2018), 2 pp. doi: 10.3390/fluids4010002.  Google Scholar

[3]

A. G. Athanassoulis, Exact equations for smoothed Wigner transforms and homogenization of wave propagation, Appl. Comput. Harmon. Anal., 24 (2008), 378-392.  doi: 10.1016/j.acha.2007.06.006.  Google Scholar

[4]

A. G. AthanassoulisG. A. Athanassoulis and T. Sapsis, Localized instabilities of the Wigner equation as a model for the emergence of rogue waves, J. Ocean Eng. Mar. Energy, 3 (2017), 353-372.  doi: 10.1007/s40722-017-0095-5.  Google Scholar

[5]

A. G. AthanassoulisN. J. Mauser and T. Paul, Coarse-scale representations and smoothed Wigner transforms, J. Math. Pures Appl., 91 (2009), 296-338.  doi: 10.1016/j.matpur.2009.01.001.  Google Scholar

[6]

J. BedrossianN. Masmoudi and C. Mouhot, Landau damping in finite regularity for unconfined systems with screened interactions, Comm. Pure Appl. Math., 71 (2018), 537-576.  doi: 10.1002/cpa.21730.  Google Scholar

[7]

T. B. Benjamin and J. E. Feir, The disintegration of wave trains on deep water Part 1. Theory, J. Fluid Mech., 27 (1967), 417-430.  doi: 10.1017/S002211206700045X.  Google Scholar

[8]

E. M. Bitner-Gregersen and O. Gramstad, DNV GL Strategic Reserach & Innovation position paper 05-2015: rogue waves: Impact on ships and offshore structures, 2015, online article: https://issuu.com/dnvgl/docs/rogue_waves_final/10. Google Scholar

[9]

T. ChenY. Hong and N. Pavlović, Global well-posedness of the NLS system for infinitely many fermions, Arch. Rational Mech. Anal., 224 (2017), 91-123.  doi: 10.1007/s00205-016-1068-x.  Google Scholar

[10]

W. Cousins and T. P. Sapsis, Reduced-order precursors of rare events in unidirectional nonlinear water waves, J. Fluid Mech., 790 (2016), 368-388.  doi: 10.1017/jfm.2016.13.  Google Scholar

[11]

G. DematteisT. Grafke and E. Vanden-Eijnden, Rogue waves and large deviations in deep sea, Proc. Natl. Acad. Sci. U. S. A., 115 (2018), 855-860.  doi: 10.1073/pnas.1710670115.  Google Scholar

[12]

R. Dubertrand and S. Müller, Spectral statistics of chaotic many-body systems, New J. Phys., 18 (2016), 033009. doi: 10.1088/1367-2630/18/3/033009.  Google Scholar

[13]

O. Gramstad, Modulational instability in JONSWAP sea states using the Alber equation, in Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering, Vol. 7B, Trondheim, Norway, 2017, 9 pp. doi: 10.1115/OMAE2017-61671.  Google Scholar

[14]

O. GramstadE. Bitner-GregersenK. Trulsen and J. C. Nieto Borge, Modulational instability and rogue waves in crossing sea states, J. Phys. Oceanogr., 48 (2018), 1317-1331.  doi: 10.1175/JPO-D-18-0006.1.  Google Scholar

[15]

J. HanH. LiuN. Huang and Z. Wang, Stochastic resonance based on modulation instability in spatiotemporal chaos, Opt. Express, 25 (2017), 8306-8314.  doi: 10.1364/OE.25.008306.  Google Scholar

[16]

K. Hasselmann, T. P. Barnett, E. Bouws, H. Carlson, D. E. Cartwright, K. Enke, J. A. Ewing, H. Gienapp, D. E. Hasselmann, P. Kruseman and A. Meerburg, Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Deut. Hydrogr. Z., 8 (1973). Google Scholar

[17]

P. A. E. M. Janssen, Nonlinear four-wave interactions and freak waves, J. Phys. Oceanogr., 33 (2003), 863-884.   Google Scholar

[18] G. J. KomenL. CavaleriM. DonelanK. HasselmannS. Hasselmann and P. A. E. M. Janssen, Dynamics and Modelling of Ocean Waves, Cambridge University Press, Cambridge, 1994.  doi: 10.1017/CBO9780511628955.  Google Scholar
[19]

M. Lewin and J. Sabin, The Hartree equation for infinitely many particles I. Well-posedness theory, Comm. Math. Phys., 334 (2015), 117-170.  doi: 10.1007/s00220-014-2098-6.  Google Scholar

[20]

M. Lewin and J. Sabin, The Hartree equation for infinitely many particles, Ⅱ: Dispersion and scattering in 2D, Anal. PDE, 7 (2014), 1339-1363.  doi: 10.2140/apde.2014.7.1339.  Google Scholar

[21]

C. Mouhot and C. Villani, On Landau damping, Acta Math., 207 (2011), 29-201.  doi: 10.1007/s11511-011-0068-9.  Google Scholar

[22] M. K. Ochi, Ocean Waves: The Stochastic Approach, Cambridge University Press, 1998.  doi: 10.1017/CBO9780511529559.  Google Scholar
[23]

M. Onorato, A. Osborne, R. Fedele and M. Serio, Landau damping and coherent structures in narrow-banded 1 + 1 deep water gravity waves, Phys. Rev. E, 67 (2003), 046305. doi: 10.1103/PhysRevE.67.046305.  Google Scholar

[24]

M. Onorato, A. R. Osborne and M. Serio, Modulational instability in crossing sea states: A possible mechanism for the formation of freak waves, Phys. Rev. Lett., 96 (2006), 014503. doi: 10.1103/PhysRevLett.96.014503.  Google Scholar

[25]

M. OnoratoS. ResidoriU. BortolozzoA. Montina and F. T. Arecchi, Rogue waves and their generating mechanisms in different physical contexts, Phys. Rep., 528 (2013), 47-89.  doi: 10.1016/j.physrep.2013.03.001.  Google Scholar

[26]

O. Penrose, Electrostatic instabilities of a uniform non-Maxwellian plasma, Phys. Fluids, 3 (1960), 258-265.  doi: 10.1063/1.1706024.  Google Scholar

[27]

I. S. Reed, On a moment theorem for complex gaussian processes, IRE Trans. Inf. Theory, 8 (1962), 194-195.  doi: 10.1109/TIT.1962.1057719.  Google Scholar

[28]

A. Ribal, On the Alber equation for random water waves, Ph.D thesis, Swinburne University of Technology, Melbourne, Australia, 2013. Google Scholar

[29]

A. RibalA. V. BabaninI. YoungA. Toffoli and M. Stiassnie, Recurrent solutions of the Alber equation initialized by Joint North Sea Wave Project spectra, J. Fluid Mech., 719 (2013), 314-344.  doi: 10.1017/jfm.2013.7.  Google Scholar

[30]

P. K. ShuklaM. Marklund and L. Stenflo, Modulational instability of nonlinearly interacting incoherent sea states, JETP Lett., 84 (2006), 645-649.  doi: 10.1134/S0021364006240039.  Google Scholar

[31]

J. N. SteerM. L. McallisterA. G. L. Borthwick and T. S. van der Bremer, Experimental observation of modulational instability in crossing surface gravity wavetrains, Fluids, 4 (2019), 1-15.  doi: 10.3390/fluids4020105.  Google Scholar

[32]

M. StiassnieA. Regev and Y. Agnon, Recurrent solutions of Alber's equation for random water-wave fields, J. Fluid Mech., 598 (2008), 245-266.  doi: 10.1017/S0022112007009998.  Google Scholar

[33]

R. Stuhlmeier and M. Stiassnie, Evolution of statistically inhomogeneous degenerate water wave quartets, Philos. Trans. Roy. Soc. A, 376 (2018), 20170101. doi: 10.1098/rsta.2017.0101.  Google Scholar

[34]

A.-S. de Suzzoni, An equation on random variables and systems of fermions, preprint, 2016, arXiv: 1507.06180. Google Scholar

[35]

P. Wahlberg, The random Wigner distribution of Gaussian stochastic processes with covariance in S0($\mathbb{R}$2d), J. Funct. Spaces Appl., 3 (2005), 163-181.  doi: 10.1155/2005/252415.  Google Scholar

[36]

H. C. Yuen and B. M. Lake, Nonlinear dynamics of deep-water gravity waves, Adv. in Appl. Mech., 22 (1982), 67-229.  doi: 10.1016/S0065-2156(08)70066-8.  Google Scholar

[37]

V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys., 9 (1968), 190-194.  doi: 10.1007/BF00913182.  Google Scholar

[38]

V. E. Zakharov and L. A. Ostrovsky, Modulation instability: The beginning, Phys. D, 238 (2009), 540-548.  doi: 10.1016/j.physd.2008.12.002.  Google Scholar

[39]

DNVGL-RP-C205: Environmental conditions and environmental loads, Recommended Practice report, 2017. Available from: https://oilgas.standards.dnvgl.com/download/dnvgl-rp-c205-environmental-conditions-and-environmental-loads. Google Scholar

Figure 3.  Numerical investigation of the stability condition for a stable JONSWAP spectrum, cf. Section 8 for more details. We are using a target of $ 1/4\pi $ as in equation 54. Left: Plots of the curve $ \Gamma_X $ on the complex plane for different values of $ X. $ Since $ 1/4\pi $ is always outside the $ \Gamma_X, $ this spectrum is stable. Right: The span of the real parts of $ \Gamma_X $ for different values of $ X $
Figure 4.  Numerical investigation of the stability condition for an unstable JONSWAP spectrum. Left: Plots of the curve $ \Gamma_X $ on the complex plane for different values of $ X. $ Since $ 1/4\pi $ is contained in some curves $ \Gamma_X, $ the spectrum is unstable. Right: The span of the real parts of $ \Gamma_X $ for different values of $ X. $ In this case it highlights clearly the bandwidth of unstable wavenumbers $ X $
Figure 1.  The domains of integration for the integrals $ I_j, $ $ j = 1,\dots,6 $
Figure 2.  Some common profiles of JONSWAP spectra
Figure 5.  A number of points on the $ (\gamma,\alpha) $ plane are tested for stability of the corresponding JONSWAP spectrum, cf. equation 52. $ \alpha $ controls the power of the sea state (larger $ \alpha $ means larger significant wave height) and $ \gamma $ controls the effective bandwidth (larger $ \gamma $ means more narrowly peaked spectrum). The carrier wavenumber $ k_0 $ can easily be seen not to affect the (in)stability of the spectrum. $ (\gamma,\alpha) $ points found to be stable are marked with a full square, while points found to be unstable are marked with an empty square. For reference the proposed separatrices of [29] and [13] are shown (they are of the form $ \alpha\cdot\gamma/\beta = C, $ where $ \beta $ is the mean wave steepness and $ C = 0.77 $ [13] or $ C = 0.974 $ [29]). More details can be found in Section 8. Top: Linear scaling in both axes. Bottom: Log scaling in the $ \alpha $ (vertical) axis
[1]

Thomas Chen, Ryan Denlinger, Nataša Pavlović. Moments and regularity for a Boltzmann equation via Wigner transform. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 4979-5015. doi: 10.3934/dcds.2019204

[2]

Cong He, Hongjun Yu. Large time behavior of the solution to the Landau Equation with specular reflective boundary condition. Kinetic & Related Models, 2013, 6 (3) : 601-623. doi: 10.3934/krm.2013.6.601

[3]

Hubert L. Bray, Marcus A. Khuri. A Jang equation approach to the Penrose inequality. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 741-766. doi: 10.3934/dcds.2010.27.741

[4]

Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure & Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165

[5]

Imen Benabbas, Djamel Eddine Teniou. Observability of wave equation with Ventcel dynamic condition. Evolution Equations & Control Theory, 2018, 7 (4) : 545-570. doi: 10.3934/eect.2018026

[6]

Wolfgang Wagner. A random cloud model for the Wigner equation. Kinetic & Related Models, 2016, 9 (1) : 217-235. doi: 10.3934/krm.2016.9.217

[7]

Takeshi Taniguchi. Exponential boundary stabilization for nonlinear wave equations with localized damping and nonlinear boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1571-1585. doi: 10.3934/cpaa.2017075

[8]

Miroslav Grmela, Michal Pavelka. Landau damping in the multiscale Vlasov theory. Kinetic & Related Models, 2018, 11 (3) : 521-545. doi: 10.3934/krm.2018023

[9]

Kim Dang Phung. Decay of solutions of the wave equation with localized nonlinear damping and trapped rays. Mathematical Control & Related Fields, 2011, 1 (2) : 251-265. doi: 10.3934/mcrf.2011.1.251

[10]

Nicolas Fourrier, Irena Lasiecka. Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions. Evolution Equations & Control Theory, 2013, 2 (4) : 631-667. doi: 10.3934/eect.2013.2.631

[11]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

[12]

Aníbal Rodríguez-Bernal, Enrique Zuazua. Parabolic singular limit of a wave equation with localized boundary damping. Discrete & Continuous Dynamical Systems - A, 1995, 1 (3) : 303-346. doi: 10.3934/dcds.1995.1.303

[13]

Tae Gab Ha. On viscoelastic wave equation with nonlinear boundary damping and source term. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1543-1576. doi: 10.3934/cpaa.2010.9.1543

[14]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations & Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[15]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[16]

Hongwei Zhang, Qingying Hu. Asymptotic behavior and nonexistence of wave equation with nonlinear boundary condition. Communications on Pure & Applied Analysis, 2005, 4 (4) : 861-869. doi: 10.3934/cpaa.2005.4.861

[17]

Fabrizio Colombo, Davide Guidetti. Identification of the memory kernel in the strongly damped wave equation by a flux condition. Communications on Pure & Applied Analysis, 2009, 8 (2) : 601-620. doi: 10.3934/cpaa.2009.8.601

[18]

Muhammad I. Mustafa. On the control of the wave equation by memory-type boundary condition. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1179-1192. doi: 10.3934/dcds.2015.35.1179

[19]

Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure & Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191

[20]

Dongsheng Yin, Min Tang, Shi Jin. The Gaussian beam method for the wigner equation with discontinuous potentials. Inverse Problems & Imaging, 2013, 7 (3) : 1051-1074. doi: 10.3934/ipi.2013.7.1051

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (77)
  • HTML views (115)
  • Cited by (2)

[Back to Top]