\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Asymptotic flocking in the Cucker-Smale model with reaction-type delays in the non-oscillatory regime

  • * Corresponding author: Jan Haskovec

    * Corresponding author: Jan Haskovec 
The first author is supported by KAUST baseline funds
Abstract Full Text(HTML) Related Papers Cited by
  • We study a variant of the Cucker-Smale system with reaction-type delay. Using novel backward-forward and stability estimates on appropriate quantities we derive sufficient conditions for asymptotic flocking of the solutions. These conditions, although not explicit, relate the velocity fluctuation of the initial datum and the length of the delay. If satisfied, they guarantee monotone decay (i.e., non-oscillatory regime) of the velocity fluctuations towards zero for large times. For the simplified setting with only two agents and constant communication rate the Cucker-Smale system reduces to the delay negative feedback equation. We demonstrate that in this case our method provides the sharp condition for the size of the delay such that the solution be non-oscillatory. Moreover, we comment on the mathematical issues appearing in the formal macroscopic description of the reaction-type delay system.

    Mathematics Subject Classification: Primary: 34K05, 82C22; Secondary: 34D05, 92D50.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] J. CañizoJ. Carrillo and J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion, Math. Models Methods Appl. Sci., 21 (2011), 515-539.  doi: 10.1142/S0218202511005131.
    [2] J. A. CarriloM. FornasierJ. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236.  doi: 10.1137/090757290.
    [3] J. A. Carrillo, Y.-P. Choi and M. Hauray, The derivation of swarming models: Mean-field limit and Wasserstein distances, in Collective Dynamics from Bacteria to Crowds, Vol. 533, Springer, Vienna, 2014, 1–46. doi: 10.1007/978-3-7091-1785-9_1.
    [4] Y.-P. Choi, S.-Y. Ha and Z. Li, Emergent dynamics of the Cucker–Smale flocking model and its variants, in Active Particles, Vol. 1, Birkhäuser/Springer, Cham, 2017,299–331.
    [5] Y.-P. Choi and J. Haskovec, Cucker-Smale model with normalized communication weights and time delay, Kinet. Relat. Models, 10 (2017), 1011-1033.  doi: 10.3934/krm.2017040.
    [6] Y.-P. Choi and J. Haskovec, Hydrodynamic Cucker-Smale model with normalized communication weights and time delay, SIAM J. Math. Anal., 51 (2019), 2660-2685.  doi: 10.1137/17M1139151.
    [7] Y.-P. Choi and Z. Li, Emergent behavior of Cucker-Smale flocking particles with heterogeneous time delays, Appl. Math. Lett., 86 (2018), 49-56.  doi: 10.1016/j.aml.2018.06.018.
    [8] F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.
    [9] F. Cucker and S. Smale, On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197-227.  doi: 10.1007/s11537-007-0647-x.
    [10] J.-G. DongS.-Y. Ha and D. Kim, Interplay of time-delay and velocity alignment in the Cucker-Smale model on a general digraph, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5569-5596.  doi: 10.3934/dcdsb.2019072.
    [11] R. ErbanJ. Haskovec and Y. Sun, A Cucker-Smale model with noise and delay, SIAM J. Appl. Math., 76 (2016), 1535-1557.  doi: 10.1137/15M1030467.
    [12] I. Gyori and  G. LadasOscillation Theory of Delay Differential Equations with Applications, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1991. 
    [13] S.-Y. Ha.J. KimJ. Park and X. Zhang, Complete cluster predictability of the cucker-smale flocking model on the real line, Arch. Rational Mech. Anal., 231 (2019), 319-365.  doi: 10.1007/s00205-018-1281-x.
    [14] S.-Y. HaC. LattanzioB. Rubino and M. Slemrod, Flocking and synchronization of particle models, Quart. Appl. Math., 69 (2011), 91-103.  doi: 10.1090/S0033-569X-2010-01200-7.
    [15] S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297-325.  doi: 10.4310/CMS.2009.v7.n2.a2.
    [16] S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, 1 (2008), 415-435.  doi: 10.3934/krm.2008.1.415.
    [17] D. KaliseJ. PeszekA. Peters and Y.-P. Choi, A collisionless singular Cucker-Smale model with decentralized formation control, SIAM J. Appl. Dyn. Syst., 18 (2019), 1954-1981.  doi: 10.1137/19M1241799.
    [18] Y. Liu and J. Wu, Flocking and asymptotic velocity of the Cucker-Smale model with processing delay, J. Math. Anal. Appl., 415 (2014), 53-61.  doi: 10.1016/j.jmaa.2014.01.036.
    [19] I. Markou, Collision avoiding in the singular Cucker-Smale model with nonlinear velocity couplings, Discrete Contin. Dyn. Syst., 38 (2018), 5245-5260.  doi: 10.3934/dcds.2018232.
    [20] G. Naldi, L. Pareschi and G. Toscani (eds.), Mathematical Modeling of Collective Behaviour in Socio-Economic and Life Sciences, Birkhäuser Boston, Ltd., Boston, MA, 2010. doi: 10.1007/978-0-8176-4946-3.
    [21] L. Pareschi and  G. ToscaniInteracting Multiagent Systems: Kinetic equations and Monte Carlo methods, Oxford University Press, 2014. 
    [22] C. Pignotti and E. Trelat, Convergence to consensus of the general finite-dimensional Cucker-Smale model with time-varying delays, Commun. Math. Sci., 16 (2018), 2053-2076.  doi: 10.4310/CMS.2018.v16.n8.a1.
    [23] C. Pignotti and I. Reche Vallejo, Flocking estimates for the Cucker-Smale model with time lag and hierarchical leadership, J. Math. Anal. Appl., 464 (2018), 1313-1332.  doi: 10.1016/j.jmaa.2018.04.070.
    [24] C. Pignotti and I. Reche Vallejo, Asymptotic Analysis of a Cucker-Smale System with Leadership and Distributed Delay, in Trends in Control Theory and Partial Differential Equations
    [25] H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer, 2011. doi: 10.1007/978-1-4419-7646-8.
    [26] T. Vicsek and A. Zafeiris, Collective motion, Phys. Rep., 517 (2012), 71-140.  doi: 10.1016/j.physrep.2012.03.004.
  • 加载中
SHARE

Article Metrics

HTML views(375) PDF downloads(252) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return