October  2020, 13(5): 869-888. doi: 10.3934/krm.2020030

Kinetic formulation of a 2 × 2 hyperbolic system arising in gas chromatography

1. 

Université Savoie Mont Blanc, LAMA, UMR CNRS 5127, 73376 Le Bourget-du-Lac Cedex, France

2. 

Université Côte d'Azur, LJAD, Inria & CNRS 7351, Parc Valrose, 06108 Nice

Received  May 2019 Revised  March 2020 Published  August 2020

A particular 2x2 hyperbolic system commonly used in the context of gas-solid chromatography is reformulated as a single kinetic equation using an additional kinetic variable. A kinetic numerical scheme is built from this new formulation and its behavior is tested on solving the Riemann problem in different configurations leading to single or composite waves.

Citation: Christian Bourdarias, Marguerite Gisclon, Stéphane Junca. Kinetic formulation of a 2 × 2 hyperbolic system arising in gas chromatography. Kinetic & Related Models, 2020, 13 (5) : 869-888. doi: 10.3934/krm.2020030
References:
[1]

E. I. Akulinin, O. O. Golubyatnikov, D. S. Dvoretsky and S. I. Dvoretsky, Numerical study of cyclic adsorption processes of air oxygen enrichment in dynamics, Journal of Physics: Conference Series, (2019), 012005. doi: 10.1088/1742-6596/1278/1/012005.  Google Scholar

[2]

C. Bourdarias, On a system of p.d.e. modelling heatless adsorption of a gaseous mixture, M2AN, 26 (1992), 867-892.  doi: 10.1051/m2an/1992260708671.  Google Scholar

[3]

C. Bourdarias, Approximation of the solution to a system modeling heatless adsorption of gases, SIAM J. Numer. Anal., 35 (1998), 13-30.  doi: 10.1137/S0036142993248249.  Google Scholar

[4]

C. BourdariasM. Gisclon and S. Junca, Some mathematical results on a system of transport equations with an algebraic constraint describing fixed-bed adsorption of gases, J. Math. Anal. Appl., 313 (2006), 551-571.  doi: 10.1016/j.jmaa.2005.07.082.  Google Scholar

[5]

C. BourdariasM. Gisclon and S. Junca, Existence of weak entropy solutions for gas chromatography system with one or two actives species and non convex isotherms, Commun. Math. Sci., 5 (2007), 67-84.  doi: 10.4310/CMS.2007.v5.n1.a3.  Google Scholar

[6]

C. BourdariasM. Gisclon and S. Junca, Blow up at the hyperbolic boundary for a $2 \times 2$ system arising from chemical engineering, J. Hyperbolic Differ. Equ., 7 (2010), 297-316.  doi: 10.1142/S0219891610002116.  Google Scholar

[7]

C. BourdariasM. Gisclon and S. Junca, Strong stability with respect to weak limits for a hyperbolic system arising from gas chromatography, Methods Appl. Anal., 17 (2010), 301-330.  doi: 10.4310/MAA.2010.v17.n3.a5.  Google Scholar

[8]

C. BourdariasM. Gisclon and S. Junca, Eulerian and lagrangian formulations in $BV^{s}$ for gas-solid chromatography, Com. in Math. Sci., 14 (2016), 665-1685.  doi: 10.4310/CMS.2016.v14.n6.a10.  Google Scholar

[9]

Y. Brenier, Averaged multivalued solutions for scalar conservation laws, SIAM J. Num. Anal., 21 (1984), 1013-1037.  doi: 10.1137/0721063.  Google Scholar

[10]

S. BrunauerP. H. Emmett and E. Teller, Adsorption of gases in multimolecular layers, Journal of the American Chemical Society, 60 (1938), 309-319.  doi: 10.1021/ja01269a023.  Google Scholar

[11]

C. Dafermos, Hyperbolic Conservation Laws in Continuum physics, Springer, Heidelberg, 2000. doi: 10.1007/3-540-29089-3_14.  Google Scholar

[12]

S. J. Doong and R. T. Yang, Bulk separation of multicomponent gas mixture by pressure swing adsorption: Pore/surface diffusion and equilibrium models, AIChE Journal, 32 (1986), 397-410.  doi: 10.1002/aic.690320306.  Google Scholar

[13]

E. Godlewski and P. A. Raviart, Hyperbolic Systems on Conservation Laws, SMAI, 1991.  Google Scholar

[14]

E. Godlewski and P. A. Raviart, Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences, 118, Springer-Verlag, New-York, 1996. doi: 10.1007/978-1-4612-0713-9.  Google Scholar

[15]

F. JamesY.-J. Peng and B. Perthame, Kinetic formulation for chromatography and some other hyperbolic systems, J. Math. Pures Appl., 74 (1995), 367-385.   Google Scholar

[16]

Irving Langmuir, The adsorption of gases on plane surface of glass, mica and platinum, Journal of the American Chemical Society, 40 (1918), 1361-1402.  doi: 10.1021/ja02242a004.  Google Scholar

[17]

M. Douglas LevanC. A. CostaA. E. RodriguesA. Bossy and D. Tondeur, Fixed–bed adsorption of gases: Effect of velocity variations on transition types, AIChE Journal, 34 (1988), 996-1005.  doi: 10.1002/aic.690340612.  Google Scholar

[18]

P.-L. LionsB. Perthame and E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related questions, J. Amer. Math. Soc., 7 (1994), 169-191.  doi: 10.1090/S0894-0347-1994-1201239-3.  Google Scholar

[19]

P.-L. LionsB. Perthame and E. Tadmor, Kinetic formulation of the isentropic gas dynamics and p-systems, Comm. Math. Phys., 163 (1994), 415-431.  doi: 10.1007/BF02102014.  Google Scholar

[20]

T. P. Liu, The entropy condition and the admissibility of shocks, J. Math. Anal. Appl., 53 (1976), 78-88.  doi: 10.1016/0022-247X(76)90146-3.  Google Scholar

[21]

V. I. Oseledets, A new form of writing out the Navier-Stokes equation. The Hamiltonian formalism, Russian Math. Surveys, 44 (1989), 210-212.  doi: 10.1070/RM1989v044n03ABEH002122.  Google Scholar

[22]

Y.-J. Peng, F. James and B. Perthame, A kinetic formulation for chromatography, in Hyperbolic Problems: Theory, Numerics, Applications (Stony Brook, NY, 1994), World Scientific Pub Co Inc., River Edge, NJ, 1996,354–360.  Google Scholar

[23]

B. Perthame, Kinetic formulation of conservation laws, in Oxford Lecture Series in Mathematics and its Applications, 21, Oxford University Press, Oxford, 2002.  Google Scholar

[24]

B. Perthame and A.-E. Tzavaras, Kinetic formulation for systems of two conservation laws and elastodynamics, Arch. Ration. Mech. Anal., 155 (2000), 1-48.  doi: 10.1007/s002050000109.  Google Scholar

[25]

B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source term, Calcolo, 38 (2001), 201-231.  doi: 10.1007/s10092-001-8181-3.  Google Scholar

[26]

P. Rouchon, M. Sghoener, P. Valentin and G. Guiochon, Numerical simulation of band propagation in nonlinear chromatography, in Chromatographic Science Series, 46, Eli Grushka, Marcel Dekker Inc., New York, 1988. doi: 10.1080/01496398708057614.  Google Scholar

[27]

L. H. Shendalman and J. E. Mitchell, A study of heatless adsorption in the model system co$_2$ in he, i., Chemical Engineering Science, 27 (1972), 1449-1458.   Google Scholar

[28]

Henry William, Experiments on the quantity of gases absorbed by water, at different temperatures, and under different pressures, Philosophical Transansactions of the Royal Society of London, 93 (1803), 29-274.   Google Scholar

show all references

References:
[1]

E. I. Akulinin, O. O. Golubyatnikov, D. S. Dvoretsky and S. I. Dvoretsky, Numerical study of cyclic adsorption processes of air oxygen enrichment in dynamics, Journal of Physics: Conference Series, (2019), 012005. doi: 10.1088/1742-6596/1278/1/012005.  Google Scholar

[2]

C. Bourdarias, On a system of p.d.e. modelling heatless adsorption of a gaseous mixture, M2AN, 26 (1992), 867-892.  doi: 10.1051/m2an/1992260708671.  Google Scholar

[3]

C. Bourdarias, Approximation of the solution to a system modeling heatless adsorption of gases, SIAM J. Numer. Anal., 35 (1998), 13-30.  doi: 10.1137/S0036142993248249.  Google Scholar

[4]

C. BourdariasM. Gisclon and S. Junca, Some mathematical results on a system of transport equations with an algebraic constraint describing fixed-bed adsorption of gases, J. Math. Anal. Appl., 313 (2006), 551-571.  doi: 10.1016/j.jmaa.2005.07.082.  Google Scholar

[5]

C. BourdariasM. Gisclon and S. Junca, Existence of weak entropy solutions for gas chromatography system with one or two actives species and non convex isotherms, Commun. Math. Sci., 5 (2007), 67-84.  doi: 10.4310/CMS.2007.v5.n1.a3.  Google Scholar

[6]

C. BourdariasM. Gisclon and S. Junca, Blow up at the hyperbolic boundary for a $2 \times 2$ system arising from chemical engineering, J. Hyperbolic Differ. Equ., 7 (2010), 297-316.  doi: 10.1142/S0219891610002116.  Google Scholar

[7]

C. BourdariasM. Gisclon and S. Junca, Strong stability with respect to weak limits for a hyperbolic system arising from gas chromatography, Methods Appl. Anal., 17 (2010), 301-330.  doi: 10.4310/MAA.2010.v17.n3.a5.  Google Scholar

[8]

C. BourdariasM. Gisclon and S. Junca, Eulerian and lagrangian formulations in $BV^{s}$ for gas-solid chromatography, Com. in Math. Sci., 14 (2016), 665-1685.  doi: 10.4310/CMS.2016.v14.n6.a10.  Google Scholar

[9]

Y. Brenier, Averaged multivalued solutions for scalar conservation laws, SIAM J. Num. Anal., 21 (1984), 1013-1037.  doi: 10.1137/0721063.  Google Scholar

[10]

S. BrunauerP. H. Emmett and E. Teller, Adsorption of gases in multimolecular layers, Journal of the American Chemical Society, 60 (1938), 309-319.  doi: 10.1021/ja01269a023.  Google Scholar

[11]

C. Dafermos, Hyperbolic Conservation Laws in Continuum physics, Springer, Heidelberg, 2000. doi: 10.1007/3-540-29089-3_14.  Google Scholar

[12]

S. J. Doong and R. T. Yang, Bulk separation of multicomponent gas mixture by pressure swing adsorption: Pore/surface diffusion and equilibrium models, AIChE Journal, 32 (1986), 397-410.  doi: 10.1002/aic.690320306.  Google Scholar

[13]

E. Godlewski and P. A. Raviart, Hyperbolic Systems on Conservation Laws, SMAI, 1991.  Google Scholar

[14]

E. Godlewski and P. A. Raviart, Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences, 118, Springer-Verlag, New-York, 1996. doi: 10.1007/978-1-4612-0713-9.  Google Scholar

[15]

F. JamesY.-J. Peng and B. Perthame, Kinetic formulation for chromatography and some other hyperbolic systems, J. Math. Pures Appl., 74 (1995), 367-385.   Google Scholar

[16]

Irving Langmuir, The adsorption of gases on plane surface of glass, mica and platinum, Journal of the American Chemical Society, 40 (1918), 1361-1402.  doi: 10.1021/ja02242a004.  Google Scholar

[17]

M. Douglas LevanC. A. CostaA. E. RodriguesA. Bossy and D. Tondeur, Fixed–bed adsorption of gases: Effect of velocity variations on transition types, AIChE Journal, 34 (1988), 996-1005.  doi: 10.1002/aic.690340612.  Google Scholar

[18]

P.-L. LionsB. Perthame and E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related questions, J. Amer. Math. Soc., 7 (1994), 169-191.  doi: 10.1090/S0894-0347-1994-1201239-3.  Google Scholar

[19]

P.-L. LionsB. Perthame and E. Tadmor, Kinetic formulation of the isentropic gas dynamics and p-systems, Comm. Math. Phys., 163 (1994), 415-431.  doi: 10.1007/BF02102014.  Google Scholar

[20]

T. P. Liu, The entropy condition and the admissibility of shocks, J. Math. Anal. Appl., 53 (1976), 78-88.  doi: 10.1016/0022-247X(76)90146-3.  Google Scholar

[21]

V. I. Oseledets, A new form of writing out the Navier-Stokes equation. The Hamiltonian formalism, Russian Math. Surveys, 44 (1989), 210-212.  doi: 10.1070/RM1989v044n03ABEH002122.  Google Scholar

[22]

Y.-J. Peng, F. James and B. Perthame, A kinetic formulation for chromatography, in Hyperbolic Problems: Theory, Numerics, Applications (Stony Brook, NY, 1994), World Scientific Pub Co Inc., River Edge, NJ, 1996,354–360.  Google Scholar

[23]

B. Perthame, Kinetic formulation of conservation laws, in Oxford Lecture Series in Mathematics and its Applications, 21, Oxford University Press, Oxford, 2002.  Google Scholar

[24]

B. Perthame and A.-E. Tzavaras, Kinetic formulation for systems of two conservation laws and elastodynamics, Arch. Ration. Mech. Anal., 155 (2000), 1-48.  doi: 10.1007/s002050000109.  Google Scholar

[25]

B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source term, Calcolo, 38 (2001), 201-231.  doi: 10.1007/s10092-001-8181-3.  Google Scholar

[26]

P. Rouchon, M. Sghoener, P. Valentin and G. Guiochon, Numerical simulation of band propagation in nonlinear chromatography, in Chromatographic Science Series, 46, Eli Grushka, Marcel Dekker Inc., New York, 1988. doi: 10.1080/01496398708057614.  Google Scholar

[27]

L. H. Shendalman and J. E. Mitchell, A study of heatless adsorption in the model system co$_2$ in he, i., Chemical Engineering Science, 27 (1972), 1449-1458.   Google Scholar

[28]

Henry William, Experiments on the quantity of gases absorbed by water, at different temperatures, and under different pressures, Philosophical Transansactions of the Royal Society of London, 93 (1803), 29-274.   Google Scholar

Figure 1.  Contact discontinuity. Exact and computed solutions at $ t = 1 $ along the column $ 0\leq x\leq 0.1 $
Figure 2.  Contact discontinuity: $ -\log(Erel) $ vs $ -\log(\Delta t) $
Figure 3.  Contact discontinuity: CPU time vs $ N $
Figure 4.  Solution to the Riemann Problem for $ c $
Figure 5.  Adsorption step with the BET isotherm. Exact and computed solutions at $ t = 1 $ along the column $ 0\leq x\leq 0.1 $
Figure 6.  Function $ f $ associated with the binary Langmuir isotherm
Figure 7.  Adsorption step with the binary Langmuir isotherm. Exact and computed solutions at $ t = 1 $ along the column $ 0\leq x\leq 0.1 $
Figure 8.  Desorption step (bottom) with the binary Langmuir isotherm. Exact and computed solutions at $ t = 1 $ along the column $ 0\leq x\leq 0.1 $
Figure 9.  Rarefaction: $ -\log(Erel) $ vs $ -\log(\Delta t) $
Figure 10.  Rarefaction: CPU time vs $ N $
Figure 11.  Data for the Riemann problem
Figure 12.  Shocks chords are shown as dashed lines. On the left $ c^- $ is connected to $ c^+ $ via a shock (S), a rarefaction wave (R) and a shock. On the right, $ c^- $ is connected to $ c^+ $ via a shock and a rarefaction wave
[1]

C. Bourdarias, M. Gisclon, A. Omrane. Transmission boundary conditions in a model-kinetic decomposition. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 69-94. doi: 10.3934/dcdsb.2002.2.69

[2]

Darko Mitrovic. New entropy conditions for scalar conservation laws with discontinuous flux. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1191-1210. doi: 10.3934/dcds.2011.30.1191

[3]

Christophe Prieur. Control of systems of conservation laws with boundary errors. Networks & Heterogeneous Media, 2009, 4 (2) : 393-407. doi: 10.3934/nhm.2009.4.393

[4]

Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73

[5]

Mehdi Badsi, Martin Campos Pinto, Bruno Després. A minimization formulation of a bi-kinetic sheath. Kinetic & Related Models, 2016, 9 (4) : 621-656. doi: 10.3934/krm.2016010

[6]

Mapundi K. Banda, Michael Herty. Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws. Mathematical Control & Related Fields, 2013, 3 (2) : 121-142. doi: 10.3934/mcrf.2013.3.121

[7]

Boris Andreianov, Mohamed Karimou Gazibo. Explicit formulation for the Dirichlet problem for parabolic-hyperbolic conservation laws. Networks & Heterogeneous Media, 2016, 11 (2) : 203-222. doi: 10.3934/nhm.2016.11.203

[8]

Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143

[9]

Marion Acheritogaray, Pierre Degond, Amic Frouvelle, Jian-Guo Liu. Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system. Kinetic & Related Models, 2011, 4 (4) : 901-918. doi: 10.3934/krm.2011.4.901

[10]

Hélène Hivert. Numerical schemes for kinetic equation with diffusion limit and anomalous time scale. Kinetic & Related Models, 2018, 11 (2) : 409-439. doi: 10.3934/krm.2018019

[11]

Jingwei Hu, Shi Jin. On kinetic flux vector splitting schemes for quantum Euler equations. Kinetic & Related Models, 2011, 4 (2) : 517-530. doi: 10.3934/krm.2011.4.517

[12]

Xavier Litrico, Vincent Fromion, Gérard Scorletti. Robust feedforward boundary control of hyperbolic conservation laws. Networks & Heterogeneous Media, 2007, 2 (4) : 717-731. doi: 10.3934/nhm.2007.2.717

[13]

Eitan Tadmor. Perfect derivatives, conservative differences and entropy stable computation of hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4579-4598. doi: 10.3934/dcds.2016.36.4579

[14]

Evgeny Yu. Panov. On a condition of strong precompactness and the decay of periodic entropy solutions to scalar conservation laws. Networks & Heterogeneous Media, 2016, 11 (2) : 349-367. doi: 10.3934/nhm.2016.11.349

[15]

Young-Sam Kwon. On the well-posedness of entropy solutions for conservation laws with source terms. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 933-949. doi: 10.3934/dcds.2009.25.933

[16]

Alberto Bressan, Marta Lewicka. A uniqueness condition for hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 673-682. doi: 10.3934/dcds.2000.6.673

[17]

Dmitry V. Zenkov. Linear conservation laws of nonholonomic systems with symmetry. Conference Publications, 2003, 2003 (Special) : 967-976. doi: 10.3934/proc.2003.2003.967

[18]

Gui-Qiang Chen, Monica Torres. On the structure of solutions of nonlinear hyperbolic systems of conservation laws. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1011-1036. doi: 10.3934/cpaa.2011.10.1011

[19]

Stefano Bianchini. A note on singular limits to hyperbolic systems of conservation laws. Communications on Pure & Applied Analysis, 2003, 2 (1) : 51-64. doi: 10.3934/cpaa.2003.2.51

[20]

Valérie Dos Santos, Bernhard Maschke, Yann Le Gorrec. A Hamiltonian perspective to the stabilization of systems of two conservation laws. Networks & Heterogeneous Media, 2009, 4 (2) : 249-266. doi: 10.3934/nhm.2009.4.249

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (55)
  • HTML views (46)
  • Cited by (0)

[Back to Top]