
-
Previous Article
Quantitative local sensitivity estimates for the random kinetic Cucker-Smale model with chemotactic movement
- KRM Home
- This Issue
- Next Article
Kinetic formulation of a 2 × 2 hyperbolic system arising in gas chromatography
1. | Université Savoie Mont Blanc, LAMA, UMR CNRS 5127, 73376 Le Bourget-du-Lac Cedex, France |
2. | Université Côte d'Azur, LJAD, Inria & CNRS 7351, Parc Valrose, 06108 Nice |
A particular 2x2 hyperbolic system commonly used in the context of gas-solid chromatography is reformulated as a single kinetic equation using an additional kinetic variable. A kinetic numerical scheme is built from this new formulation and its behavior is tested on solving the Riemann problem in different configurations leading to single or composite waves.
References:
[1] |
E. I. Akulinin, O. O. Golubyatnikov, D. S. Dvoretsky and S. I. Dvoretsky, Numerical study of cyclic adsorption processes of air oxygen enrichment in dynamics, Journal of Physics: Conference Series, (2019), 012005.
doi: 10.1088/1742-6596/1278/1/012005. |
[2] |
C. Bourdarias,
On a system of p.d.e. modelling heatless adsorption of a gaseous mixture, M2AN, 26 (1992), 867-892.
doi: 10.1051/m2an/1992260708671. |
[3] |
C. Bourdarias,
Approximation of the solution to a system modeling heatless adsorption of gases, SIAM J. Numer. Anal., 35 (1998), 13-30.
doi: 10.1137/S0036142993248249. |
[4] |
C. Bourdarias, M. Gisclon and S. Junca,
Some mathematical results on a system of transport equations with an algebraic constraint describing fixed-bed adsorption of gases, J. Math. Anal. Appl., 313 (2006), 551-571.
doi: 10.1016/j.jmaa.2005.07.082. |
[5] |
C. Bourdarias, M. Gisclon and S. Junca,
Existence of weak entropy solutions for gas chromatography system with one or two actives species and non convex isotherms, Commun. Math. Sci., 5 (2007), 67-84.
doi: 10.4310/CMS.2007.v5.n1.a3. |
[6] |
C. Bourdarias, M. Gisclon and S. Junca,
Blow up at the hyperbolic boundary for a $2 \times 2$ system arising from chemical engineering, J. Hyperbolic Differ. Equ., 7 (2010), 297-316.
doi: 10.1142/S0219891610002116. |
[7] |
C. Bourdarias, M. Gisclon and S. Junca,
Strong stability with respect to weak limits for a hyperbolic system arising from gas chromatography, Methods Appl. Anal., 17 (2010), 301-330.
doi: 10.4310/MAA.2010.v17.n3.a5. |
[8] |
C. Bourdarias, M. Gisclon and S. Junca,
Eulerian and lagrangian formulations in $BV^{s}$ for gas-solid chromatography, Com. in Math. Sci., 14 (2016), 665-1685.
doi: 10.4310/CMS.2016.v14.n6.a10. |
[9] |
Y. Brenier,
Averaged multivalued solutions for scalar conservation laws, SIAM J. Num. Anal., 21 (1984), 1013-1037.
doi: 10.1137/0721063. |
[10] |
S. Brunauer, P. H. Emmett and E. Teller,
Adsorption of gases in multimolecular layers, Journal of the American Chemical Society, 60 (1938), 309-319.
doi: 10.1021/ja01269a023. |
[11] |
C. Dafermos, Hyperbolic Conservation Laws in Continuum physics, Springer, Heidelberg, 2000.
doi: 10.1007/3-540-29089-3_14. |
[12] |
S. J. Doong and R. T. Yang,
Bulk separation of multicomponent gas mixture by pressure swing adsorption: Pore/surface diffusion and equilibrium models, AIChE Journal, 32 (1986), 397-410.
doi: 10.1002/aic.690320306. |
[13] |
E. Godlewski and P. A. Raviart, Hyperbolic Systems on Conservation Laws, SMAI, 1991. |
[14] |
E. Godlewski and P. A. Raviart, Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences, 118, Springer-Verlag, New-York, 1996.
doi: 10.1007/978-1-4612-0713-9. |
[15] |
F. James, Y.-J. Peng and B. Perthame,
Kinetic formulation for chromatography and some other hyperbolic systems, J. Math. Pures Appl., 74 (1995), 367-385.
|
[16] |
Irving Langmuir,
The adsorption of gases on plane surface of glass, mica and platinum, Journal of the American Chemical Society, 40 (1918), 1361-1402.
doi: 10.1021/ja02242a004. |
[17] |
M. Douglas Levan, C. A. Costa, A. E. Rodrigues, A. Bossy and D. Tondeur,
Fixed–bed adsorption of gases: Effect of velocity variations on transition types, AIChE Journal, 34 (1988), 996-1005.
doi: 10.1002/aic.690340612. |
[18] |
P.-L. Lions, B. Perthame and E. Tadmor,
A kinetic formulation of multidimensional scalar conservation laws and related questions, J. Amer. Math. Soc., 7 (1994), 169-191.
doi: 10.1090/S0894-0347-1994-1201239-3. |
[19] |
P.-L. Lions, B. Perthame and E. Tadmor,
Kinetic formulation of the isentropic gas dynamics and p-systems, Comm. Math. Phys., 163 (1994), 415-431.
doi: 10.1007/BF02102014. |
[20] |
T. P. Liu,
The entropy condition and the admissibility of shocks, J. Math. Anal. Appl., 53 (1976), 78-88.
doi: 10.1016/0022-247X(76)90146-3. |
[21] |
V. I. Oseledets,
A new form of writing out the Navier-Stokes equation. The Hamiltonian formalism, Russian Math. Surveys, 44 (1989), 210-212.
doi: 10.1070/RM1989v044n03ABEH002122. |
[22] |
Y.-J. Peng, F. James and B. Perthame, A kinetic formulation for chromatography, in Hyperbolic Problems: Theory, Numerics, Applications (Stony Brook, NY, 1994), World Scientific Pub Co Inc., River Edge, NJ, 1996,354–360. |
[23] |
B. Perthame, Kinetic formulation of conservation laws, in Oxford Lecture Series in Mathematics and its Applications, 21, Oxford University Press, Oxford, 2002. |
[24] |
B. Perthame and A.-E. Tzavaras,
Kinetic formulation for systems of two conservation laws and elastodynamics, Arch. Ration. Mech. Anal., 155 (2000), 1-48.
doi: 10.1007/s002050000109. |
[25] |
B. Perthame and C. Simeoni,
A kinetic scheme for the Saint-Venant system with a source term, Calcolo, 38 (2001), 201-231.
doi: 10.1007/s10092-001-8181-3. |
[26] |
P. Rouchon, M. Sghoener, P. Valentin and G. Guiochon, Numerical simulation of band propagation in nonlinear chromatography, in Chromatographic Science Series, 46, Eli Grushka, Marcel Dekker Inc., New York, 1988.
doi: 10.1080/01496398708057614. |
[27] |
L. H. Shendalman and J. E. Mitchell,
A study of heatless adsorption in the model system co$_2$ in he, i., Chemical Engineering Science, 27 (1972), 1449-1458.
|
[28] |
Henry William,
Experiments on the quantity of gases absorbed by water, at different temperatures, and under different pressures, Philosophical Transansactions of the Royal Society of London, 93 (1803), 29-274.
|
show all references
References:
[1] |
E. I. Akulinin, O. O. Golubyatnikov, D. S. Dvoretsky and S. I. Dvoretsky, Numerical study of cyclic adsorption processes of air oxygen enrichment in dynamics, Journal of Physics: Conference Series, (2019), 012005.
doi: 10.1088/1742-6596/1278/1/012005. |
[2] |
C. Bourdarias,
On a system of p.d.e. modelling heatless adsorption of a gaseous mixture, M2AN, 26 (1992), 867-892.
doi: 10.1051/m2an/1992260708671. |
[3] |
C. Bourdarias,
Approximation of the solution to a system modeling heatless adsorption of gases, SIAM J. Numer. Anal., 35 (1998), 13-30.
doi: 10.1137/S0036142993248249. |
[4] |
C. Bourdarias, M. Gisclon and S. Junca,
Some mathematical results on a system of transport equations with an algebraic constraint describing fixed-bed adsorption of gases, J. Math. Anal. Appl., 313 (2006), 551-571.
doi: 10.1016/j.jmaa.2005.07.082. |
[5] |
C. Bourdarias, M. Gisclon and S. Junca,
Existence of weak entropy solutions for gas chromatography system with one or two actives species and non convex isotherms, Commun. Math. Sci., 5 (2007), 67-84.
doi: 10.4310/CMS.2007.v5.n1.a3. |
[6] |
C. Bourdarias, M. Gisclon and S. Junca,
Blow up at the hyperbolic boundary for a $2 \times 2$ system arising from chemical engineering, J. Hyperbolic Differ. Equ., 7 (2010), 297-316.
doi: 10.1142/S0219891610002116. |
[7] |
C. Bourdarias, M. Gisclon and S. Junca,
Strong stability with respect to weak limits for a hyperbolic system arising from gas chromatography, Methods Appl. Anal., 17 (2010), 301-330.
doi: 10.4310/MAA.2010.v17.n3.a5. |
[8] |
C. Bourdarias, M. Gisclon and S. Junca,
Eulerian and lagrangian formulations in $BV^{s}$ for gas-solid chromatography, Com. in Math. Sci., 14 (2016), 665-1685.
doi: 10.4310/CMS.2016.v14.n6.a10. |
[9] |
Y. Brenier,
Averaged multivalued solutions for scalar conservation laws, SIAM J. Num. Anal., 21 (1984), 1013-1037.
doi: 10.1137/0721063. |
[10] |
S. Brunauer, P. H. Emmett and E. Teller,
Adsorption of gases in multimolecular layers, Journal of the American Chemical Society, 60 (1938), 309-319.
doi: 10.1021/ja01269a023. |
[11] |
C. Dafermos, Hyperbolic Conservation Laws in Continuum physics, Springer, Heidelberg, 2000.
doi: 10.1007/3-540-29089-3_14. |
[12] |
S. J. Doong and R. T. Yang,
Bulk separation of multicomponent gas mixture by pressure swing adsorption: Pore/surface diffusion and equilibrium models, AIChE Journal, 32 (1986), 397-410.
doi: 10.1002/aic.690320306. |
[13] |
E. Godlewski and P. A. Raviart, Hyperbolic Systems on Conservation Laws, SMAI, 1991. |
[14] |
E. Godlewski and P. A. Raviart, Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences, 118, Springer-Verlag, New-York, 1996.
doi: 10.1007/978-1-4612-0713-9. |
[15] |
F. James, Y.-J. Peng and B. Perthame,
Kinetic formulation for chromatography and some other hyperbolic systems, J. Math. Pures Appl., 74 (1995), 367-385.
|
[16] |
Irving Langmuir,
The adsorption of gases on plane surface of glass, mica and platinum, Journal of the American Chemical Society, 40 (1918), 1361-1402.
doi: 10.1021/ja02242a004. |
[17] |
M. Douglas Levan, C. A. Costa, A. E. Rodrigues, A. Bossy and D. Tondeur,
Fixed–bed adsorption of gases: Effect of velocity variations on transition types, AIChE Journal, 34 (1988), 996-1005.
doi: 10.1002/aic.690340612. |
[18] |
P.-L. Lions, B. Perthame and E. Tadmor,
A kinetic formulation of multidimensional scalar conservation laws and related questions, J. Amer. Math. Soc., 7 (1994), 169-191.
doi: 10.1090/S0894-0347-1994-1201239-3. |
[19] |
P.-L. Lions, B. Perthame and E. Tadmor,
Kinetic formulation of the isentropic gas dynamics and p-systems, Comm. Math. Phys., 163 (1994), 415-431.
doi: 10.1007/BF02102014. |
[20] |
T. P. Liu,
The entropy condition and the admissibility of shocks, J. Math. Anal. Appl., 53 (1976), 78-88.
doi: 10.1016/0022-247X(76)90146-3. |
[21] |
V. I. Oseledets,
A new form of writing out the Navier-Stokes equation. The Hamiltonian formalism, Russian Math. Surveys, 44 (1989), 210-212.
doi: 10.1070/RM1989v044n03ABEH002122. |
[22] |
Y.-J. Peng, F. James and B. Perthame, A kinetic formulation for chromatography, in Hyperbolic Problems: Theory, Numerics, Applications (Stony Brook, NY, 1994), World Scientific Pub Co Inc., River Edge, NJ, 1996,354–360. |
[23] |
B. Perthame, Kinetic formulation of conservation laws, in Oxford Lecture Series in Mathematics and its Applications, 21, Oxford University Press, Oxford, 2002. |
[24] |
B. Perthame and A.-E. Tzavaras,
Kinetic formulation for systems of two conservation laws and elastodynamics, Arch. Ration. Mech. Anal., 155 (2000), 1-48.
doi: 10.1007/s002050000109. |
[25] |
B. Perthame and C. Simeoni,
A kinetic scheme for the Saint-Venant system with a source term, Calcolo, 38 (2001), 201-231.
doi: 10.1007/s10092-001-8181-3. |
[26] |
P. Rouchon, M. Sghoener, P. Valentin and G. Guiochon, Numerical simulation of band propagation in nonlinear chromatography, in Chromatographic Science Series, 46, Eli Grushka, Marcel Dekker Inc., New York, 1988.
doi: 10.1080/01496398708057614. |
[27] |
L. H. Shendalman and J. E. Mitchell,
A study of heatless adsorption in the model system co$_2$ in he, i., Chemical Engineering Science, 27 (1972), 1449-1458.
|
[28] |
Henry William,
Experiments on the quantity of gases absorbed by water, at different temperatures, and under different pressures, Philosophical Transansactions of the Royal Society of London, 93 (1803), 29-274.
|










[1] |
Darko Mitrovic. New entropy conditions for scalar conservation laws with discontinuous flux. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1191-1210. doi: 10.3934/dcds.2011.30.1191 |
[2] |
Christophe Prieur. Control of systems of conservation laws with boundary errors. Networks and Heterogeneous Media, 2009, 4 (2) : 393-407. doi: 10.3934/nhm.2009.4.393 |
[3] |
C. Bourdarias, M. Gisclon, A. Omrane. Transmission boundary conditions in a model-kinetic decomposition. Discrete and Continuous Dynamical Systems - B, 2002, 2 (1) : 69-94. doi: 10.3934/dcdsb.2002.2.69 |
[4] |
Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73 |
[5] |
Mapundi K. Banda, Michael Herty. Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws. Mathematical Control and Related Fields, 2013, 3 (2) : 121-142. doi: 10.3934/mcrf.2013.3.121 |
[6] |
Mehdi Badsi, Martin Campos Pinto, Bruno Després. A minimization formulation of a bi-kinetic sheath. Kinetic and Related Models, 2016, 9 (4) : 621-656. doi: 10.3934/krm.2016010 |
[7] |
Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143 |
[8] |
Boris Andreianov, Mohamed Karimou Gazibo. Explicit formulation for the Dirichlet problem for parabolic-hyperbolic conservation laws. Networks and Heterogeneous Media, 2016, 11 (2) : 203-222. doi: 10.3934/nhm.2016.11.203 |
[9] |
Marion Acheritogaray, Pierre Degond, Amic Frouvelle, Jian-Guo Liu. Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system. Kinetic and Related Models, 2011, 4 (4) : 901-918. doi: 10.3934/krm.2011.4.901 |
[10] |
Xavier Litrico, Vincent Fromion, Gérard Scorletti. Robust feedforward boundary control of hyperbolic conservation laws. Networks and Heterogeneous Media, 2007, 2 (4) : 717-731. doi: 10.3934/nhm.2007.2.717 |
[11] |
Eitan Tadmor. Perfect derivatives, conservative differences and entropy stable computation of hyperbolic conservation laws. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4579-4598. doi: 10.3934/dcds.2016.36.4579 |
[12] |
Evgeny Yu. Panov. On a condition of strong precompactness and the decay of periodic entropy solutions to scalar conservation laws. Networks and Heterogeneous Media, 2016, 11 (2) : 349-367. doi: 10.3934/nhm.2016.11.349 |
[13] |
Young-Sam Kwon. On the well-posedness of entropy solutions for conservation laws with source terms. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 933-949. doi: 10.3934/dcds.2009.25.933 |
[14] |
Alberto Bressan, Marta Lewicka. A uniqueness condition for hyperbolic systems of conservation laws. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 673-682. doi: 10.3934/dcds.2000.6.673 |
[15] |
Gui-Qiang Chen, Monica Torres. On the structure of solutions of nonlinear hyperbolic systems of conservation laws. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1011-1036. doi: 10.3934/cpaa.2011.10.1011 |
[16] |
Dmitry V. Zenkov. Linear conservation laws of nonholonomic systems with symmetry. Conference Publications, 2003, 2003 (Special) : 967-976. doi: 10.3934/proc.2003.2003.967 |
[17] |
Stefano Bianchini. A note on singular limits to hyperbolic systems of conservation laws. Communications on Pure and Applied Analysis, 2003, 2 (1) : 51-64. doi: 10.3934/cpaa.2003.2.51 |
[18] |
Valérie Dos Santos, Bernhard Maschke, Yann Le Gorrec. A Hamiltonian perspective to the stabilization of systems of two conservation laws. Networks and Heterogeneous Media, 2009, 4 (2) : 249-266. doi: 10.3934/nhm.2009.4.249 |
[19] |
Fumioki Asakura, Andrea Corli. The path decomposition technique for systems of hyperbolic conservation laws. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 15-32. doi: 10.3934/dcdss.2016.9.15 |
[20] |
Hélène Hivert. Numerical schemes for kinetic equation with diffusion limit and anomalous time scale. Kinetic and Related Models, 2018, 11 (2) : 409-439. doi: 10.3934/krm.2018019 |
2020 Impact Factor: 1.432
Tools
Metrics
Other articles
by authors
[Back to Top]