\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the transport operators arising from linearizing the Vlasov-Poisson or Einstein-Vlasov system about isotropic steady states

  • * Corresponding author: Gerhard Rein

    * Corresponding author: Gerhard Rein 
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • If the Vlasov-Poisson or Einstein-Vlasov system is linearized about an isotropic steady state, a linear operator arises the properties of which are relevant in the linear as well as nonlinear stability analysis of the given steady state. We prove that when defined on a suitable Hilbert space and equipped with the proper domain of definition this transport operator $ {\mathcal T} $ is skew-adjoint, i.e., $ {\mathcal T}^\ast = - {\mathcal T} $. In the Vlasov-Poisson case we also determine the kernel of this operator.

    Mathematics Subject Classification: Primary: 85A05, 47F05; Secondary: 35B35, 35Q75.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] H. Andréasson, The Einstein-Vlasov system/kinetic theory, Living Rev. Relativ., 14 (2011), Available from: https://doi.org/10.12942/lrr-2011-4.
    [2] J. BattW. Faltenbacher and E. Horst, Stationary spherically symmetric models in stellar dynamics, Arch. Rational Mech. Anal., 93 (1986), 159-183.  doi: 10.1007/BF00279958.
    [3] J. Binney and  S. TremaineGalactic Dynamics, Princeton University Press, Princeton, 1987. 
    [4] M. Bostan, Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics, J. Differential Equations, 249 (2010), 1620-1663.  doi: 10.1016/j.jde.2010.07.010.
    [5] Y. Guo and Z. Lin, Unstable and stable galaxy models, Commun. Math. Phys., 279 (2008), 789–813. doi: 10.1007/s00220-008-0439-z.
    [6] Y. Guo and G. Rein, A non-variational approach to nonlinear stability in stellar dynamics applied to the King model, Commun. Math. Phys., 271 (2007), 489-509.  doi: 10.1007/s00220-007-0212-8.
    [7] M. Hadžić, Z. Lin and G. Rein, Stability and instability of self-gravitating relativistic matter distributions, preprint, arXiv: 1810.00809.
    [8] J. Ipser and K. S. Thorne, Relativistic, spherically symmetric star clusters I. Stability theory for radial perturbations, Astrophys. J., 154 (1968), 251-270.  doi: 10.1086/149755.
    [9] M. LemouF. Mehats and P. Raphaël, A new variational approach to the stability of gravitational systems, Commun. Math. Phys., 302 (2011), 161-224.  doi: 10.1007/s00220-010-1182-9.
    [10] T. Ramming and G. Rein, Spherically symmetric equilibria for self-gravitating kinetic or fluid models in the non-relativistic and relativistic case—A simple proof for finite extension, SIAM Journal on Mathematical Analysis, 45 (2013), 900-914.  doi: 10.1137/120896712.
    [11] G. Rein, The Vlasov-Einstein System with Surface Symmetry, Habilitationsschrift, Universität München, 1995.
    [12] G. Rein, Collisionless kinetic equations from astrophysics—The Vlasov-Poisson system, in Handbook of Differential Equations, Evolutionary Equations (eds. C. M. Dafermos and E. Feireisl), 3, Elsevier, 2007,383–476. doi: 10.1016/S1874-5717(07)80008-9.
    [13] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.
    [14] J. Schaeffer, A class of counterexamples to Jeans' theorem for the Vlasov-Einstein system, Commun. Math. Phys., 204 (1999), 313-327.  doi: 10.1007/s002200050647.
    [15] C. Straub, Stability of the King model—A coercivity-based approach, Master thesis, Universität Bayreuth, 2019.
  • 加载中
SHARE

Article Metrics

HTML views(1427) PDF downloads(209) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return