• Previous Article
    Analytic smoothing effect for the nonlinear Landau equation of Maxwellian molecules
  • KRM Home
  • This Issue
  • Next Article
    Quantitative local sensitivity estimates for the random kinetic Cucker-Smale model with chemotactic movement
October  2020, 13(5): 933-949. doi: 10.3934/krm.2020032

On the transport operators arising from linearizing the Vlasov-Poisson or Einstein-Vlasov system about isotropic steady states

Fakultät für Mathematik, Physik und Informatik, Universität Bayreuth, D-95440 Bayreuth, Germany

* Corresponding author: Gerhard Rein

Received  December 2019 Revised  April 2020 Published  August 2020

If the Vlasov-Poisson or Einstein-Vlasov system is linearized about an isotropic steady state, a linear operator arises the properties of which are relevant in the linear as well as nonlinear stability analysis of the given steady state. We prove that when defined on a suitable Hilbert space and equipped with the proper domain of definition this transport operator $ {\mathcal T} $ is skew-adjoint, i.e., $ {\mathcal T}^\ast = - {\mathcal T} $. In the Vlasov-Poisson case we also determine the kernel of this operator.

Citation: Gerhard Rein, Christopher Straub. On the transport operators arising from linearizing the Vlasov-Poisson or Einstein-Vlasov system about isotropic steady states. Kinetic & Related Models, 2020, 13 (5) : 933-949. doi: 10.3934/krm.2020032
References:
[1]

H. Andréasson, The Einstein-Vlasov system/kinetic theory, Living Rev. Relativ., 14 (2011), Available from: https://doi.org/10.12942/lrr-2011-4. Google Scholar

[2]

J. BattW. Faltenbacher and E. Horst, Stationary spherically symmetric models in stellar dynamics, Arch. Rational Mech. Anal., 93 (1986), 159-183.  doi: 10.1007/BF00279958.  Google Scholar

[3] J. Binney and S. Tremaine, Galactic Dynamics, Princeton University Press, Princeton, 1987.   Google Scholar
[4]

M. Bostan, Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics, J. Differential Equations, 249 (2010), 1620-1663.  doi: 10.1016/j.jde.2010.07.010.  Google Scholar

[5]

Y. Guo and Z. Lin, Unstable and stable galaxy models, Commun. Math. Phys., 279 (2008), 789–813. doi: 10.1007/s00220-008-0439-z.  Google Scholar

[6]

Y. Guo and G. Rein, A non-variational approach to nonlinear stability in stellar dynamics applied to the King model, Commun. Math. Phys., 271 (2007), 489-509.  doi: 10.1007/s00220-007-0212-8.  Google Scholar

[7]

M. Hadžić, Z. Lin and G. Rein, Stability and instability of self-gravitating relativistic matter distributions, preprint, arXiv: 1810.00809. Google Scholar

[8]

J. Ipser and K. S. Thorne, Relativistic, spherically symmetric star clusters I. Stability theory for radial perturbations, Astrophys. J., 154 (1968), 251-270.  doi: 10.1086/149755.  Google Scholar

[9]

M. LemouF. Mehats and P. Raphaël, A new variational approach to the stability of gravitational systems, Commun. Math. Phys., 302 (2011), 161-224.  doi: 10.1007/s00220-010-1182-9.  Google Scholar

[10]

T. Ramming and G. Rein, Spherically symmetric equilibria for self-gravitating kinetic or fluid models in the non-relativistic and relativistic case—A simple proof for finite extension, SIAM Journal on Mathematical Analysis, 45 (2013), 900-914.  doi: 10.1137/120896712.  Google Scholar

[11]

G. Rein, The Vlasov-Einstein System with Surface Symmetry, Habilitationsschrift, Universität München, 1995. Google Scholar

[12]

G. Rein, Collisionless kinetic equations from astrophysics—The Vlasov-Poisson system, in Handbook of Differential Equations, Evolutionary Equations (eds. C. M. Dafermos and E. Feireisl), 3, Elsevier, 2007,383–476. doi: 10.1016/S1874-5717(07)80008-9.  Google Scholar

[13]

W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.  Google Scholar

[14]

J. Schaeffer, A class of counterexamples to Jeans' theorem for the Vlasov-Einstein system, Commun. Math. Phys., 204 (1999), 313-327.  doi: 10.1007/s002200050647.  Google Scholar

[15]

C. Straub, Stability of the King model—A coercivity-based approach, Master thesis, Universität Bayreuth, 2019. Google Scholar

show all references

References:
[1]

H. Andréasson, The Einstein-Vlasov system/kinetic theory, Living Rev. Relativ., 14 (2011), Available from: https://doi.org/10.12942/lrr-2011-4. Google Scholar

[2]

J. BattW. Faltenbacher and E. Horst, Stationary spherically symmetric models in stellar dynamics, Arch. Rational Mech. Anal., 93 (1986), 159-183.  doi: 10.1007/BF00279958.  Google Scholar

[3] J. Binney and S. Tremaine, Galactic Dynamics, Princeton University Press, Princeton, 1987.   Google Scholar
[4]

M. Bostan, Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics, J. Differential Equations, 249 (2010), 1620-1663.  doi: 10.1016/j.jde.2010.07.010.  Google Scholar

[5]

Y. Guo and Z. Lin, Unstable and stable galaxy models, Commun. Math. Phys., 279 (2008), 789–813. doi: 10.1007/s00220-008-0439-z.  Google Scholar

[6]

Y. Guo and G. Rein, A non-variational approach to nonlinear stability in stellar dynamics applied to the King model, Commun. Math. Phys., 271 (2007), 489-509.  doi: 10.1007/s00220-007-0212-8.  Google Scholar

[7]

M. Hadžić, Z. Lin and G. Rein, Stability and instability of self-gravitating relativistic matter distributions, preprint, arXiv: 1810.00809. Google Scholar

[8]

J. Ipser and K. S. Thorne, Relativistic, spherically symmetric star clusters I. Stability theory for radial perturbations, Astrophys. J., 154 (1968), 251-270.  doi: 10.1086/149755.  Google Scholar

[9]

M. LemouF. Mehats and P. Raphaël, A new variational approach to the stability of gravitational systems, Commun. Math. Phys., 302 (2011), 161-224.  doi: 10.1007/s00220-010-1182-9.  Google Scholar

[10]

T. Ramming and G. Rein, Spherically symmetric equilibria for self-gravitating kinetic or fluid models in the non-relativistic and relativistic case—A simple proof for finite extension, SIAM Journal on Mathematical Analysis, 45 (2013), 900-914.  doi: 10.1137/120896712.  Google Scholar

[11]

G. Rein, The Vlasov-Einstein System with Surface Symmetry, Habilitationsschrift, Universität München, 1995. Google Scholar

[12]

G. Rein, Collisionless kinetic equations from astrophysics—The Vlasov-Poisson system, in Handbook of Differential Equations, Evolutionary Equations (eds. C. M. Dafermos and E. Feireisl), 3, Elsevier, 2007,383–476. doi: 10.1016/S1874-5717(07)80008-9.  Google Scholar

[13]

W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.  Google Scholar

[14]

J. Schaeffer, A class of counterexamples to Jeans' theorem for the Vlasov-Einstein system, Commun. Math. Phys., 204 (1999), 313-327.  doi: 10.1007/s002200050647.  Google Scholar

[15]

C. Straub, Stability of the King model—A coercivity-based approach, Master thesis, Universität Bayreuth, 2019. Google Scholar

[1]

Katherine Zhiyuan Zhang. Focusing solutions of the Vlasov-Poisson system. Kinetic & Related Models, 2019, 12 (6) : 1313-1327. doi: 10.3934/krm.2019051

[2]

Blanca Ayuso, José A. Carrillo, Chi-Wang Shu. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic & Related Models, 2011, 4 (4) : 955-989. doi: 10.3934/krm.2011.4.955

[3]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic & Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129

[4]

Gianluca Crippa, Silvia Ligabue, Chiara Saffirio. Lagrangian solutions to the Vlasov-Poisson system with a point charge. Kinetic & Related Models, 2018, 11 (6) : 1277-1299. doi: 10.3934/krm.2018050

[5]

Zili Chen, Xiuting Li, Xianwen Zhang. The two dimensional Vlasov-Poisson system with steady spatial asymptotics. Kinetic & Related Models, 2017, 10 (4) : 977-1009. doi: 10.3934/krm.2017039

[6]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[7]

Meixia Xiao, Xianwen Zhang. On global solutions to the Vlasov-Poisson system with radiation damping. Kinetic & Related Models, 2018, 11 (5) : 1183-1209. doi: 10.3934/krm.2018046

[8]

Hyung Ju Hwang, Jaewoo Jung, Juan J. L. Velázquez. On global existence of classical solutions for the Vlasov-Poisson system in convex bounded domains. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 723-737. doi: 10.3934/dcds.2013.33.723

[9]

Francis Filbet, Roland Duclous, Bruno Dubroca. Analysis of a high order finite volume scheme for the 1D Vlasov-Poisson system. Discrete & Continuous Dynamical Systems - S, 2012, 5 (2) : 283-305. doi: 10.3934/dcdss.2012.5.283

[10]

Trinh T. Nguyen. Derivative estimates for screened Vlasov-Poisson system around Penrose-stable equilibria. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020043

[11]

Robert T. Glassey, Walter A. Strauss. Perturbation of essential spectra of evolution operators and the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 457-472. doi: 10.3934/dcds.1999.5.457

[12]

Ling Hsiao, Fucai Li, Shu Wang. Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system. Communications on Pure & Applied Analysis, 2008, 7 (3) : 579-589. doi: 10.3934/cpaa.2008.7.579

[13]

Yemin Chen. Smoothness of classical solutions to the Vlasov-Poisson-Landau system. Kinetic & Related Models, 2008, 1 (3) : 369-386. doi: 10.3934/krm.2008.1.369

[14]

Kosuke Ono, Walter A. Strauss. Regular solutions of the Vlasov-Poisson-Fokker-Planck system. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 751-772. doi: 10.3934/dcds.2000.6.751

[15]

Lan Luo, Hongjun Yu. Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system. Kinetic & Related Models, 2016, 9 (2) : 393-405. doi: 10.3934/krm.2016.9.393

[16]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020292

[17]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. Time evolution of a Vlasov-Poisson plasma with magnetic confinement. Kinetic & Related Models, 2012, 5 (4) : 729-742. doi: 10.3934/krm.2012.5.729

[18]

Gang Li, Xianwen Zhang. A Vlasov-Poisson plasma of infinite mass with a point charge. Kinetic & Related Models, 2018, 11 (2) : 303-336. doi: 10.3934/krm.2018015

[19]

Simone Calogero, Stephen Pankavich. On the spatially homogeneous and isotropic Einstein-Vlasov-Fokker-Planck system with cosmological scalar field. Kinetic & Related Models, 2018, 11 (5) : 1063-1083. doi: 10.3934/krm.2018041

[20]

Yuanjie Lei, Linjie Xiong, Huijiang Zhao. One-species Vlasov-Poisson-Landau system near Maxwellians in the whole space. Kinetic & Related Models, 2014, 7 (3) : 551-590. doi: 10.3934/krm.2014.7.551

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (46)
  • HTML views (41)
  • Cited by (0)

Other articles
by authors

[Back to Top]