We study the emergent behavior of discrete-time approximation of the finite-dimensional Kuramoto model. Compared to Zhang and Zhu's recent work in [
Citation: |
[1] |
J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys, 77 (2005), 137-185.
![]() |
[2] |
J. A. Acebrón, M. M. Lavrentiev, Jr . and and R. Spigler, Spectral analysis and computation for the Kuramoto-Sakaguchi integroparabolic equation, IMA J. Numer. Anal, 21 (2001), 239-263.
doi: 10.1093/imanum/21.1.239.![]() ![]() ![]() |
[3] |
J. Buck and E. Buck, Biology of synchronous flashing of fireflies, Nature, 211 (1966), 562-564.
doi: 10.1038/211562a0.![]() ![]() |
[4] |
D. Benedetto, E. Caglioti and U. Montemagno, On the complete phase synchronization for the Kuramoto model in the mean-field limit, Commun. Math. Sci, 13 (2015), 1775-1786.
doi: 10.4310/CMS.2015.v13.n7.a6.![]() ![]() ![]() |
[5] |
J. C. Bronski, L. Deville and M. J. Park, Fully synchronous solutions and the synchronization phase transition for the finite-$N$ Kuramoto model, Chaos, 22 (2012), 033133.
doi: 10.1063/1.4745197.![]() ![]() ![]() |
[6] |
Y.-P. Choi and S.-Y. Ha, A simple proof of the complete consensus of discrete-time dynamical networks with time-varying couplings, Int. J. Numer. Anal. Model. Ser. B, 1 (2010), 58-69.
![]() ![]() |
[7] |
Y.-P. Choi, S.-Y. Ha and J. Morales, Emergent dynamics of the Kuramoto ensemble under the effect of inertia, Discrete Contin. Dyn. Syst, 38 (2018), 4875-4913.
doi: 10.3934/dcds.2018213.![]() ![]() ![]() |
[8] |
Y.-P. Choi, S.-Y. Ha, S. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Phys. D, 241 (2012), 735-754.
doi: 10.1016/j.physd.2011.11.011.![]() ![]() ![]() |
[9] |
Y.-P. Choi, S.-Y. Ha and S. Noh, Remarks on the nonlinear stability of the Kuramoto model with inertia, Quart. Appl. Math, 73 (2015), 391-399.
doi: 10.1090/qam/1383.![]() ![]() ![]() |
[10] |
Y.-P. Choi, S.-Y. Ha and S.-B. Yun, Global existence and asymptotic behavior of measure valued solutions to the kinetic Kuramoto-Daido model with inertia, Netw. Heterog. Media, 8 (2013), 943-968.
doi: 10.3934/nhm.2013.8.943.![]() ![]() ![]() |
[11] |
Y.-P. Choi, Z. Li, S.-Y. Ha, X. Xue and S.-B. Yun, Complete entrainment of Kuramoto oscillators with inertia on networks via gradient-like flow, J. Differential Equations, 257 (2014), 2591-2621.
doi: 10.1016/j.jde.2014.05.054.![]() ![]() ![]() |
[12] |
N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Automat. Control, 54 (2009), 353-357.
doi: 10.1109/TAC.2008.2007884.![]() ![]() ![]() |
[13] |
F. Dörfler and F. Bullo, On the critical coupling for Kuramoto oscillators, SIAM J. Appl. Dyn. Syst, 10 (2011), 1070-1099.
doi: 10.1137/10081530X.![]() ![]() ![]() |
[14] |
F. Dörfler and F. Bullo, Synchronization in complex networks of phase oscillators: A survey, Automatica J. IFAC, 50 (2014), 1539-1564.
doi: 10.1016/j.automatica.2014.04.012.![]() ![]() ![]() |
[15] |
J.-G. Dong and X. Xue, Synchronization analysis of Kuramoto oscillators, Commun. Math. Sci, 11 (2013), 465-480.
doi: 10.4310/CMS.2013.v11.n2.a7.![]() ![]() ![]() |
[16] |
S.-Y. Ha, T. Ha and J. H. Kim, On the complete synchronization of the Kuramoto phase model, Phys. D, 239 (2010), 1692-1700.
doi: 10.1016/j.physd.2010.05.003.![]() ![]() ![]() |
[17] |
S.-Y. Ha, D. Kim, J. Kim and X. Zhang, Uniform-in-time transition from discrete to continuous dynamics in the Kuramoto synchronization, J. Math. Phys, 60 (2019), 051508.
doi: 10.1063/1.5051788.![]() ![]() ![]() |
[18] |
S.-Y. Ha, D. Kim, J. Lee and Y. Zhang, Remarks on the stability properties of the Kuramoto-Sakaguchi-Fokker-Planck equation with frustration, Z. Angew. Math. Phys, 69 (2018), 25 pp.
doi: 10.1007/s00033-018-0984-z.![]() ![]() ![]() |
[19] |
S.-Y. Ha, D. Ko, J. Park and X. Zhang, Collective synchronization of classical and quantum oscillators, EMS Surv. Math. Sci, 3 (2016), 209-267.
doi: 10.4171/EMSS/17.![]() ![]() ![]() |
[20] |
S.-Y. Ha, H. K. Kim and S. Ryoo, Emergence of phase-locked states for the Kuramoto model in a large coupling regime, Commun. Math. Sci, 14 (2016), 1073-1091.
doi: 10.4310/CMS.2016.v14.n4.a10.![]() ![]() ![]() |
[21] |
S.-Y. Ha, H. K. Kim and S. Ryoo, On the Finiteness of Collisions and phase-locked States for the Kuramoto Model, J. Stat. Phys., 163 (2016), 1394-1424.
doi: 10.1007/s10955-016-1528-6.![]() ![]() ![]() |
[22] |
S.-Y. Ha and Z. Li, Uniqueness and well-ordering of emergent phase-locked states for the Kuramoto model with frustration and inertia, Math. Models Methods Appl. Sci., 26 (2016), 357-382.
doi: 10.1142/S0218202516400054.![]() ![]() ![]() |
[23] |
J. L. van Hemmen and W. F. Wreszinski, Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators, J. Stat. Phys., 72 (1993), 145-166.
doi: 10.1007/BF01048044.![]() ![]() |
[24] |
S.-Y. Ha and Q. Xiao, Nonlinear instability of the incoherent state for the Kuramoto-Sakaguchi-Fokker-Plank equation, J. Stat. Phys., 160 (2015), 477-496.
doi: 10.1007/s10955-015-1270-5.![]() ![]() ![]() |
[25] |
S.-Y. Ha and Q. Xiao, Remarks on the nonlinear stability of the Kuramoto-Sakaguchi equation, J. Differential Equations, 259 (2015), 2430-2457.
doi: 10.1016/j.jde.2015.03.038.![]() ![]() ![]() |
[26] |
Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, International Symposium on Mathematical Problems in Mathematical Physics, Lecture Notes in Phys., 30 (1975), 420-422.
![]() ![]() |
[27] |
M. M. Lavrentiev, Jr . and and R. Spigler, Existence and uniqueness of solutions to the Kuramoto-Sakaguchi nonlinear parabolic integrodifferential equation, Differential Integral Equations, 13 (2000), 649-667.
![]() ![]() |
[28] |
R. Mirollo and S. H. Strogatz, Stability of incoherence in a population of coupled oscillators, J. Statist. Phys., 63 (1991), 613-635.
doi: 10.1007/BF01029202.![]() ![]() ![]() |
[29] |
R. Mirollo and S. H. Strogatz, The spectrum of the locked state for the Kuramoto model of coupled oscillators, Phys. D, 205 (2005), 249-266.
doi: 10.1016/j.physd.2005.01.017.![]() ![]() ![]() |
[30] |
R. Mirollo and S. H. Strogatz, The spectrum of the partially locked state for the Kuramoto model, J. Nonlinear Sci., 17 (2007), 309-347.
doi: 10.1007/s00332-006-0806-x.![]() ![]() ![]() |
[31] |
A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge, 2001.
doi: 10.1017/CBO9780511755743.![]() ![]() ![]() |
[32] |
H. Sakaguchi, Cooperative phenomena in coupled oscillator system under external fields, Progr. Theoret. Phys., 79 (1988), 39-46.
doi: 10.1143/PTP.79.39.![]() ![]() ![]() |
[33] |
S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Phys. D, 143 (2000), 1-20.
doi: 10.1016/S0167-2789(00)00094-4.![]() ![]() ![]() |
[34] |
M. Verwoerd and O. Mason, Global phase-locking in finite populations of phase-coupled oscillators, SIAM J. Appl. Dyn. Syst., 7 (2008), 134-160.
doi: 10.1137/070686858.![]() ![]() ![]() |
[35] |
M. Verwoerd and O. Mason, On computing the critical coupling coefficient for the Kuramoto model on a complete bipartite graph, SIAM J. Appl. Dyn. Syst., 8 (2009), 417-453.
doi: 10.1137/080725726.![]() ![]() ![]() |
[36] |
M. Verwoerd and O. Mason, A convergence result for the Kuramoto model with all-to-all coupling, SIAM J. Appl. Dyn. Syst., 10 (2011), 906-920.
doi: 10.1137/090771946.![]() ![]() ![]() |
[37] |
A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15-42.
doi: 10.1016/0022-5193(67)90051-3.![]() ![]() |
[38] |
X. Zhang and T. Zhu, Emergent behaviors of the discrete-time Kuramoto model for generic initial configuration, preprint, arXiv: 1909.03358.
doi: 10.4310/CMS.2020.v18.n2.a11.![]() ![]() |