The aim of the article is to study the stability of a non-local kinetic model proposed in [
Citation: |
Figure 1.
Stability diagram for a localized sensing kernel
Figure 2.
Stability diagram for a uniform (a) and a ramp (b) sensing kernel. The blue dotted line represents
Figure 3.
Temporal evolution of
Figure 4.
Evolution of the density distribution in the adhesion case starting from the initial condition
Figure 5.
Comparison of unstable evolutions for the same value of
Figure 6.
Evolution in the asymmetric case for a localised sensing kernel. The initial condition is always
[1] |
N. J. Armstrong, K. J. Painter and J. A. Sherratt, A continuum approach to modelling cell-cell adhesion, J. Theoret. Biol., 243 (2006), 98-113.
doi: 10.1016/j.jtbi.2006.05.030.![]() ![]() ![]() |
[2] |
V. Bitsouni and R. Eftimie, Non-local parabolic and hyperbolic models for cell polarisation in heterogeneous cancer cell populations, Bull. Math. Biol., 80 (2018), 2600-2632.
doi: 10.1007/s11538-018-0477-4.![]() ![]() ![]() |
[3] |
A. Buttenschön, Integro-partial Differential Equation Models for Cell-cell Adhesion and its Application, Ph.D thesis, University of Alberta, 2018.
![]() |
[4] |
A. Buttenschön and T. Hillen, Non-local adhesion models for microorganisms on bounded domains, SIAM J. Appl. Math., 80(1), (2020) 382–401.
doi: 10.1137/19M1250315.![]() ![]() ![]() |
[5] |
A. Buttenschön and T. Hillen, Non-local cell adhesion models: Steady states and bifurcations, 2020, arXiv: 2001.00286.
![]() ![]() |
[6] |
A. Buttenschön, T. Hillen, A. Gerisch and K. J. Painter, A space-jump derivation for non-local models of cell-cell adhesion and non-local chemotaxis, J. Math. Biol., 76 (2018), 429-456.
doi: 10.1007/s00285-017-1144-3.![]() ![]() ![]() |
[7] |
J. Carrillo, F. Hoffmann and R. Eftimie, Non-local kinetic and macroscopic models for self-organised animal aggregations, Kin. Rel. Models, 8 (2015), 413-441.
doi: 10.3934/krm.2015.8.413.![]() ![]() ![]() |
[8] |
A. Colombi, M. Scianna and L. Preziosi, Coherent modelling switch between pointwise and distributed representations of cell aggregates, J. Math. Biol., 74 (2017), 783-808.
doi: 10.1007/s00285-016-1042-0.![]() ![]() ![]() |
[9] |
A. Colombi, M. Scianna and A. Tosin, Differentiated cell behavior: A multiscale approach using measure theory, J. Math. Biol., 71 (2015), 1049-1079.
doi: 10.1007/s00285-014-0846-z.![]() ![]() ![]() |
[10] |
R. Eftimie, Hyperbolic and kinetic models for self-organized biological aggregations and movement: A brief review, J. Math. Biol., 65 (2012), 35-75.
doi: 10.1007/s00285-011-0452-2.![]() ![]() ![]() |
[11] |
R. Eftimie, G. de Vries, M. A Lewis and F. Lutscher, Modeling group formation and activity patterns in self-organizing collectives of individuals, Bull. Math. Biol., 69 (2007), 1537-1565.
doi: 10.1007/s11538-006-9175-8.![]() ![]() ![]() |
[12] |
R. Eftimie, M. Perez and P.-L. Buono, Pattern formation in a nonlocal mathematical model for the multiple roles of the TGF-$\beta$ pathway in tumour dynamics, Math. Biosci., 289 (2017), 96-115.
doi: 10.1016/j.mbs.2017.05.003.![]() ![]() ![]() |
[13] |
R. Eftimie, G. Vries and M. Lewis, Complex spatial group patterns result from different animal communication mechanisms, PNAS USA, 104 (2007), 6974-6979.
doi: 10.1073/pnas.0611483104.![]() ![]() ![]() |
[14] |
F. Filbet and K. Yang, Numerical simulation of kinetic models for chemotaxis, SIAM J. Sci. Comput., 36 (2014), B348–B366.
doi: 10.1137/130910208.![]() ![]() ![]() |
[15] |
T. Hillen, K. J. Painter and C. Schmeiser, Global existence for chemotaxis with finite sampling radius, Discr. Cont. Dyn. Sys. - B, 7 (2007), 125-144.
doi: 10.3934/dcdsb.2007.7.125.![]() ![]() ![]() |
[16] |
N. Loy and L. Preziosi, Modelling physical limits of migration by a kinetic model with non-local sensing, J. Math. Biol., 80 (2020), 1759-1801.
doi: 10.1007/s00285-020-01479-w.![]() ![]() ![]() |
[17] |
N. Loy and L. Preziosi, Kinetic models with non-local sensing determining cell polarization and speed according to independent cues, J. Math. Biol., 80 (2019), 373-421.
doi: 10.1007/s00285-019-01411-x.![]() ![]() ![]() |
[18] |
H. G. Othmer, S. R. Dunbar and W. Alt, Models of dispersal in biological systems, J. Math. Biol., 26 (1988), 263-298.
doi: 10.1007/BF00277392.![]() ![]() ![]() |
[19] |
H. Othmer and T. Hillen, The diffusion limit of transport equations Ⅱ: Chemotaxis equations, SIAM J. Appl. Math., 62 (2002), 1222-1250.
doi: 10.1137/S0036139900382772.![]() ![]() ![]() |
[20] |
J. K. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (4) (2002), 501-543.
![]() ![]() |
[21] |
K. J. Painter, N. J. Armstrong and J. A. Sherratt, The impact of adhesion on cellular invasion processes in cancer and development, J. Theoret. Biol., 264 (2010), 1057-1067.
doi: 10.1016/j.jtbi.2010.03.033.![]() ![]() ![]() |
[22] |
K. J. Painter, M. J. Bloomfield, J. A. Sherratt and A. Gerisch, A nonlocal model for contact attraction and repulsion in heterogeneous cell populations, Bull. Math. Biol., 77 (2015), 1132-1165.
doi: 10.1007/s11538-015-0080-x.![]() ![]() ![]() |
[23] |
B. Perthame and S. Yasuda, Stiff-response-induced instability for chemotactic bacteria and flux-limited keller-segel equation, Nonlinearity, 31 (2018), 4065-4089.
doi: 10.1088/1361-6544/aac760.![]() ![]() ![]() |
[24] |
R. G. Plaza, Derivation of a bacterial nutrient-taxis system with doubly degenerate cross-diffusion as the parabolic limit of a velocity-jump process, J. Math. Biol., 78 (2019), 1681-1711.
doi: 10.1007/s00285-018-1323-x.![]() ![]() ![]() |
[25] |
C. Schmeiser and A. Nouri, Aggregated steady states of a kinetic model for chemotaxis, Kin. Rel. Models, 10 (2017), 313-327.
doi: 10.3934/krm.2017013.![]() ![]() ![]() |
[26] |
D. W. Stroock, Some stochastic processes which arise from a model of the motion of a bacterium, Zeit. Wahr. Ver. Geb., 28 (1974), 305-315.
doi: 10.1007/BF00532948.![]() ![]() ![]() |
[27] |
A. Tosin and P. Frasca, Existence and approximation of probability measure solutions to models of collective behaviors, Netw. Heter. Media, 6 (2011), 561-596.
doi: 10.3934/nhm.2011.6.561.![]() ![]() ![]() |