December  2020, 13(6): 1071-1106. doi: 10.3934/krm.2020038

A semigroup approach to the convergence rate of a collisionless gas

Sorbonne Université, CNRS, Laboratoire de Probabilité, Statistique et Modélisation, F-75005 Paris, France

Received  November 2019 Revised  June 2020 Published  September 2020

We study the rate of convergence to equilibrium for a collisionless (Knudsen) gas enclosed in a vessel in dimension $ n \in \{2,3\} $. By semigroup arguments, we prove that in the $ L^1 $ norm, the polynomial rate of convergence $ \frac{1}{(t+1)^{n-}} $ given in [25], [17] and [18] can be extended to any $ C^2 $ domain, with standard assumptions on the initial data. This is to our knowledge, the first quantitative result in collisionless kinetic theory in dimension equal to or larger than 2 relying on deterministic arguments that does not require any symmetry of the domain, nor a monokinetic regime. The dependency of the rate with respect to the initial distribution is detailed. Our study includes the case where the temperature at the boundary varies. The demonstrations are adapted from a deterministic version of a subgeometric Harris' theorem recently established by Cañizo and Mischler [7]. We also compare our model with a free-transport equation with absorbing boundary.

Citation: Armand Bernou. A semigroup approach to the convergence rate of a collisionless gas. Kinetic & Related Models, 2020, 13 (6) : 1071-1106. doi: 10.3934/krm.2020038
References:
[1]

K. Aoki and F. Golse, On the speed of approach to equilibrium for a collisionless gas, Kinetic and Related Models, 4 (2011), 87-107.  doi: 10.3934/krm.2011.4.87.  Google Scholar

[2]

L. Arkeryd and C. Cercignani, A global existence theorem for the initial-boundary-value problem for the Boltzmann equation when the boundaries are not isothermal, Archive for Rational Mechanics and Analysis, 125 (1993), 271-287.  doi: 10.1007/BF00383222.  Google Scholar

[3]

L. Arkeryd and A. Nouri, Boltzmann asymptotics with diffuse reflection boundary conditions, Monatshefte für Mathematik, 123 (1997), 285–298. doi: 10.1007/BF01326764.  Google Scholar

[4]

J. Bergh and J. Lofstrom, Interpolation Spaces: An Introduction, Comprehensive studies in mathematics. Springer Berlin Heidelberg, 1976.  Google Scholar

[5]

A. Bernou and N. Fournier, A coupling approach for the convergence to equilibrium for a collisionless gas, arXiv e-prints, page arXiv: 1910.02739, Oct. 2019. Google Scholar

[6]

L. Boltzmann, Lectures on Gas Theory, University of California Press, Berkeley-Los Angeles, Calif. 1964.  Google Scholar

[7]

J. A. Cañizo and S. Mischler, Doeblin-Harris theory for stochastic operators and semigroups, In preparation, 2019. Google Scholar

[8]

C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, New York : Springer-Verlag, 1994. doi: 10.1007/978-1-4419-8524-8.  Google Scholar

[9]

R. Douc, G. Fort and A. Guillin, Subgeometric rates of convergence of f-ergodic strong Markov processes, Stochastic Processes and their Applications, 119 (2009), 897 – 923. doi: 10.1016/j.spa.2008.03.007.  Google Scholar

[10]

R. EspositoY. GuoC. Kim and R. Marra, Non-isothermal boundary in the Boltzmann theory and Fourier law, Communications in Mathematical Physics, 323 (2013), 177-239.  doi: 10.1007/s00220-013-1766-2.  Google Scholar

[11]

S. N. Evans, Stochastic billiards on general tables, Ann. Appl. Probab., 11 (2001), 419-437.  doi: 10.1214/aoap/1015345298.  Google Scholar

[12]

C. Goulaouic, Prolongements de foncteurs d'interpolation et applications, Annales de l'Institut Fourier, 18 (1968), 1-98.  doi: 10.5802/aif.277.  Google Scholar

[13]

Y. Guo, Regularity for the Vlasov equations in a half space, Indiana University Mathematics Journal, 43 (1994), 255-320.  doi: 10.1512/iumj.1994.43.43013.  Google Scholar

[14]

Y. Guo, Decay and continuity of the Boltzmann equation in bounded domains, Archive for Rational Mechanics and Analysis, 197 (2010), 713-809.  doi: 10.1007/s00205-009-0285-y.  Google Scholar

[15]

M. Hairer, Convergence of Markov processes, Lecture Notes available at http://www.hairer.org/notes/Convergence.pdf, 2016. Google Scholar

[16]

S. Janson, Interpolation of subcouples and quotient couples, Ark. Mat., 31 (1993), 307-338.  doi: 10.1007/BF02559489.  Google Scholar

[17]

H-W. KuoT-P. Liu and L-C. Tsai, Free molecular flow with boundary effect, Communications in Mathematical Physics, 318 (2013), 375-409.  doi: 10.1007/s00220-013-1662-9.  Google Scholar

[18]

H-W. KuoT-P. Liu and L-C. Tsai, Equilibrating Effects of Boundary and Collision in Rarefied Gases, Communications in Mathematical Physics, 328 (2014), 421-480.  doi: 10.1007/s00220-014-2042-9.  Google Scholar

[19]

H-W. Kuo, Equilibrating effect of Maxwell-type boundary condition in highly rarefied gas, Journal of Statistical Physics, 161 (2015), 743-800.  doi: 10.1007/s10955-015-1355-1.  Google Scholar

[20]

J. C. Maxwell, Ⅳ. On the dynamical theory of gases, Philosophical Transactions of the Royal Society of London, 157 (1867), 49-88.  doi: 10.1098/rstl.1867.0004.  Google Scholar

[21]

S. Mischler, On the trace problem for solutions of the Vlasov equation, Communications in Partial Differential Equations, 25 (1999), 1415-1443.  doi: 10.1080/03605300008821554.  Google Scholar

[22]

M. Mokhtar-Kharroubi and D. Seifert, Rates of convergence to equilibrium for collisionless kinetic equations in slab geometry, Journal of Functional Analysis, 275 (2018), 2404-2452.  doi: 10.1016/j.jfa.2018.08.005.  Google Scholar

[23]

J. Peetre, A Theory of Interpolation of Normed Spaces, Notas de matemática. Instituto de Matemática Pura e Aplicada, Conselho Nacional de Pesquisas, 1968.  Google Scholar

[24]

Y. Sone, Molecular Gas Dynamics: Theory, Techniques, and Applications, Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, 1st ed edition, 2007. doi: 10.1007/978-0-8176-4573-1.  Google Scholar

[25]

T. TsujiK. Aoki and F. Golse, Relaxation of a free-molecular gas to equilibrium caused by interaction with vessel wall, Journal of Statistical Physics, 140 (2010), 518-543.  doi: 10.1007/s10955-010-9997-5.  Google Scholar

[26]

C. Villani., Hypocoercivity., American Mathematical Society, 2009. doi: 10.1090/S0065-9266-09-00567-5.  Google Scholar

show all references

References:
[1]

K. Aoki and F. Golse, On the speed of approach to equilibrium for a collisionless gas, Kinetic and Related Models, 4 (2011), 87-107.  doi: 10.3934/krm.2011.4.87.  Google Scholar

[2]

L. Arkeryd and C. Cercignani, A global existence theorem for the initial-boundary-value problem for the Boltzmann equation when the boundaries are not isothermal, Archive for Rational Mechanics and Analysis, 125 (1993), 271-287.  doi: 10.1007/BF00383222.  Google Scholar

[3]

L. Arkeryd and A. Nouri, Boltzmann asymptotics with diffuse reflection boundary conditions, Monatshefte für Mathematik, 123 (1997), 285–298. doi: 10.1007/BF01326764.  Google Scholar

[4]

J. Bergh and J. Lofstrom, Interpolation Spaces: An Introduction, Comprehensive studies in mathematics. Springer Berlin Heidelberg, 1976.  Google Scholar

[5]

A. Bernou and N. Fournier, A coupling approach for the convergence to equilibrium for a collisionless gas, arXiv e-prints, page arXiv: 1910.02739, Oct. 2019. Google Scholar

[6]

L. Boltzmann, Lectures on Gas Theory, University of California Press, Berkeley-Los Angeles, Calif. 1964.  Google Scholar

[7]

J. A. Cañizo and S. Mischler, Doeblin-Harris theory for stochastic operators and semigroups, In preparation, 2019. Google Scholar

[8]

C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, New York : Springer-Verlag, 1994. doi: 10.1007/978-1-4419-8524-8.  Google Scholar

[9]

R. Douc, G. Fort and A. Guillin, Subgeometric rates of convergence of f-ergodic strong Markov processes, Stochastic Processes and their Applications, 119 (2009), 897 – 923. doi: 10.1016/j.spa.2008.03.007.  Google Scholar

[10]

R. EspositoY. GuoC. Kim and R. Marra, Non-isothermal boundary in the Boltzmann theory and Fourier law, Communications in Mathematical Physics, 323 (2013), 177-239.  doi: 10.1007/s00220-013-1766-2.  Google Scholar

[11]

S. N. Evans, Stochastic billiards on general tables, Ann. Appl. Probab., 11 (2001), 419-437.  doi: 10.1214/aoap/1015345298.  Google Scholar

[12]

C. Goulaouic, Prolongements de foncteurs d'interpolation et applications, Annales de l'Institut Fourier, 18 (1968), 1-98.  doi: 10.5802/aif.277.  Google Scholar

[13]

Y. Guo, Regularity for the Vlasov equations in a half space, Indiana University Mathematics Journal, 43 (1994), 255-320.  doi: 10.1512/iumj.1994.43.43013.  Google Scholar

[14]

Y. Guo, Decay and continuity of the Boltzmann equation in bounded domains, Archive for Rational Mechanics and Analysis, 197 (2010), 713-809.  doi: 10.1007/s00205-009-0285-y.  Google Scholar

[15]

M. Hairer, Convergence of Markov processes, Lecture Notes available at http://www.hairer.org/notes/Convergence.pdf, 2016. Google Scholar

[16]

S. Janson, Interpolation of subcouples and quotient couples, Ark. Mat., 31 (1993), 307-338.  doi: 10.1007/BF02559489.  Google Scholar

[17]

H-W. KuoT-P. Liu and L-C. Tsai, Free molecular flow with boundary effect, Communications in Mathematical Physics, 318 (2013), 375-409.  doi: 10.1007/s00220-013-1662-9.  Google Scholar

[18]

H-W. KuoT-P. Liu and L-C. Tsai, Equilibrating Effects of Boundary and Collision in Rarefied Gases, Communications in Mathematical Physics, 328 (2014), 421-480.  doi: 10.1007/s00220-014-2042-9.  Google Scholar

[19]

H-W. Kuo, Equilibrating effect of Maxwell-type boundary condition in highly rarefied gas, Journal of Statistical Physics, 161 (2015), 743-800.  doi: 10.1007/s10955-015-1355-1.  Google Scholar

[20]

J. C. Maxwell, Ⅳ. On the dynamical theory of gases, Philosophical Transactions of the Royal Society of London, 157 (1867), 49-88.  doi: 10.1098/rstl.1867.0004.  Google Scholar

[21]

S. Mischler, On the trace problem for solutions of the Vlasov equation, Communications in Partial Differential Equations, 25 (1999), 1415-1443.  doi: 10.1080/03605300008821554.  Google Scholar

[22]

M. Mokhtar-Kharroubi and D. Seifert, Rates of convergence to equilibrium for collisionless kinetic equations in slab geometry, Journal of Functional Analysis, 275 (2018), 2404-2452.  doi: 10.1016/j.jfa.2018.08.005.  Google Scholar

[23]

J. Peetre, A Theory of Interpolation of Normed Spaces, Notas de matemática. Instituto de Matemática Pura e Aplicada, Conselho Nacional de Pesquisas, 1968.  Google Scholar

[24]

Y. Sone, Molecular Gas Dynamics: Theory, Techniques, and Applications, Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, 1st ed edition, 2007. doi: 10.1007/978-0-8176-4573-1.  Google Scholar

[25]

T. TsujiK. Aoki and F. Golse, Relaxation of a free-molecular gas to equilibrium caused by interaction with vessel wall, Journal of Statistical Physics, 140 (2010), 518-543.  doi: 10.1007/s10955-010-9997-5.  Google Scholar

[26]

C. Villani., Hypocoercivity., American Mathematical Society, 2009. doi: 10.1090/S0065-9266-09-00567-5.  Google Scholar

[1]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[2]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

[3]

Yoshihisa Morita, Kunimochi Sakamoto. Turing type instability in a diffusion model with mass transport on the boundary. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3813-3836. doi: 10.3934/dcds.2020160

[4]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

[5]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[6]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[7]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[8]

Thomas Y. Hou, Dong Liang. Multiscale analysis for convection dominated transport equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 281-298. doi: 10.3934/dcds.2009.23.281

[9]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020395

[10]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

[11]

Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083

[12]

Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283

[13]

Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353

[14]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[15]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[16]

Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021009

[17]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

[18]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[19]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[20]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (79)
  • HTML views (108)
  • Cited by (0)

Other articles
by authors

[Back to Top]