\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A semigroup approach to the convergence rate of a collisionless gas

Abstract Full Text(HTML) Related Papers Cited by
  • We study the rate of convergence to equilibrium for a collisionless (Knudsen) gas enclosed in a vessel in dimension $ n \in \{2,3\} $. By semigroup arguments, we prove that in the $ L^1 $ norm, the polynomial rate of convergence $ \frac{1}{(t+1)^{n-}} $ given in [25], [17] and [18] can be extended to any $ C^2 $ domain, with standard assumptions on the initial data. This is to our knowledge, the first quantitative result in collisionless kinetic theory in dimension equal to or larger than 2 relying on deterministic arguments that does not require any symmetry of the domain, nor a monokinetic regime. The dependency of the rate with respect to the initial distribution is detailed. Our study includes the case where the temperature at the boundary varies. The demonstrations are adapted from a deterministic version of a subgeometric Harris' theorem recently established by Cañizo and Mischler [7]. We also compare our model with a free-transport equation with absorbing boundary.

    Mathematics Subject Classification: Primary:35B40, 82C40;Secondary:35F16.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] K. Aoki and F. Golse, On the speed of approach to equilibrium for a collisionless gas, Kinetic and Related Models, 4 (2011), 87-107.  doi: 10.3934/krm.2011.4.87.
    [2] L. Arkeryd and C. Cercignani, A global existence theorem for the initial-boundary-value problem for the Boltzmann equation when the boundaries are not isothermal, Archive for Rational Mechanics and Analysis, 125 (1993), 271-287.  doi: 10.1007/BF00383222.
    [3] L. Arkeryd and A. Nouri, Boltzmann asymptotics with diffuse reflection boundary conditions, Monatshefte für Mathematik, 123 (1997), 285–298. doi: 10.1007/BF01326764.
    [4] J. Bergh and J. Lofstrom, Interpolation Spaces: An Introduction, Comprehensive studies in mathematics. Springer Berlin Heidelberg, 1976.
    [5] A. Bernou and N. Fournier, A coupling approach for the convergence to equilibrium for a collisionless gas, arXiv e-prints, page arXiv: 1910.02739, Oct. 2019.
    [6] L. Boltzmann, Lectures on Gas Theory, University of California Press, Berkeley-Los Angeles, Calif. 1964.
    [7] J. A. Cañizo and S. Mischler, Doeblin-Harris theory for stochastic operators and semigroups, In preparation, 2019.
    [8] C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, New York : Springer-Verlag, 1994. doi: 10.1007/978-1-4419-8524-8.
    [9] R. Douc, G. Fort and A. Guillin, Subgeometric rates of convergence of f-ergodic strong Markov processes, Stochastic Processes and their Applications, 119 (2009), 897 – 923. doi: 10.1016/j.spa.2008.03.007.
    [10] R. EspositoY. GuoC. Kim and R. Marra, Non-isothermal boundary in the Boltzmann theory and Fourier law, Communications in Mathematical Physics, 323 (2013), 177-239.  doi: 10.1007/s00220-013-1766-2.
    [11] S. N. Evans, Stochastic billiards on general tables, Ann. Appl. Probab., 11 (2001), 419-437.  doi: 10.1214/aoap/1015345298.
    [12] C. Goulaouic, Prolongements de foncteurs d'interpolation et applications, Annales de l'Institut Fourier, 18 (1968), 1-98.  doi: 10.5802/aif.277.
    [13] Y. Guo, Regularity for the Vlasov equations in a half space, Indiana University Mathematics Journal, 43 (1994), 255-320.  doi: 10.1512/iumj.1994.43.43013.
    [14] Y. Guo, Decay and continuity of the Boltzmann equation in bounded domains, Archive for Rational Mechanics and Analysis, 197 (2010), 713-809.  doi: 10.1007/s00205-009-0285-y.
    [15] M. Hairer, Convergence of Markov processes, Lecture Notes available at http://www.hairer.org/notes/Convergence.pdf, 2016.
    [16] S. Janson, Interpolation of subcouples and quotient couples, Ark. Mat., 31 (1993), 307-338.  doi: 10.1007/BF02559489.
    [17] H-W. KuoT-P. Liu and L-C. Tsai, Free molecular flow with boundary effect, Communications in Mathematical Physics, 318 (2013), 375-409.  doi: 10.1007/s00220-013-1662-9.
    [18] H-W. KuoT-P. Liu and L-C. Tsai, Equilibrating Effects of Boundary and Collision in Rarefied Gases, Communications in Mathematical Physics, 328 (2014), 421-480.  doi: 10.1007/s00220-014-2042-9.
    [19] H-W. Kuo, Equilibrating effect of Maxwell-type boundary condition in highly rarefied gas, Journal of Statistical Physics, 161 (2015), 743-800.  doi: 10.1007/s10955-015-1355-1.
    [20] J. C. Maxwell, Ⅳ. On the dynamical theory of gases, Philosophical Transactions of the Royal Society of London, 157 (1867), 49-88.  doi: 10.1098/rstl.1867.0004.
    [21] S. Mischler, On the trace problem for solutions of the Vlasov equation, Communications in Partial Differential Equations, 25 (1999), 1415-1443.  doi: 10.1080/03605300008821554.
    [22] M. Mokhtar-Kharroubi and D. Seifert, Rates of convergence to equilibrium for collisionless kinetic equations in slab geometry, Journal of Functional Analysis, 275 (2018), 2404-2452.  doi: 10.1016/j.jfa.2018.08.005.
    [23] J. Peetre, A Theory of Interpolation of Normed Spaces, Notas de matemática. Instituto de Matemática Pura e Aplicada, Conselho Nacional de Pesquisas, 1968.
    [24] Y. Sone, Molecular Gas Dynamics: Theory, Techniques, and Applications, Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, 1st ed edition, 2007. doi: 10.1007/978-0-8176-4573-1.
    [25] T. TsujiK. Aoki and F. Golse, Relaxation of a free-molecular gas to equilibrium caused by interaction with vessel wall, Journal of Statistical Physics, 140 (2010), 518-543.  doi: 10.1007/s10955-010-9997-5.
    [26] C. Villani., Hypocoercivity., American Mathematical Society, 2009. doi: 10.1090/S0065-9266-09-00567-5.
  • 加载中
SHARE

Article Metrics

HTML views(1267) PDF downloads(221) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return