doi: 10.3934/krm.2020039

Averaging of highly-oscillatory transport equations

1. 

Univ Rennes, Inria, Irmar, Mingus Team, Campus de Beaulieu, F-35042 Rennes, France

2. 

Univ Rennes, CNRS, Irmar, Mingus Team, Campus de Beaulieu, F-35042 Rennes, France

3. 

Univ Rennes, Irmar, Mingus Team, Campus de Beaulieu, F-35042 Rennes, France

* Corresponding author: Philippe Chartier

Received  February 2020 Revised  June 2020 Published  September 2020

In this paper, we develop a new strategy aimed at obtaining high-order asymptotic models for transport equations with highly-oscillatory solutions. The technique relies upon recent developments averaging theory for ordinary differential equations, in particular normal form expansions in the vanishing parameter. Noteworthy, the result we state here also allows for the complete recovery of the exact solution from the asymptotic model. This is done by solving a companion transport equation that stems naturally from the change of variables underlying high-order averaging. Eventually, we apply our technique to the Vlasov equation with external electric and magnetic fields. Both constant and non-constant magnetic fields are envisaged, and asymptotic models already documented in the literature are re-derived using our methodology. In addition, it is shown how to obtain new high-order asymptotic models.

Citation: Philippe Chartier, Nicolas Crouseilles, Mohammed Lemou, Florian Méhats. Averaging of highly-oscillatory transport equations. Kinetic & Related Models, doi: 10.3934/krm.2020039
References:
[1]

S. Blanes, F. Casas, J. A. Oteo and J. Ros, A pedagogical approach to the Magnus expansion, European Journal of Physics, 31 (2010), 907-918. doi: 10.1088/0143-0807/31/4/020.  Google Scholar

[2]

M. Bostan, The Vlasov-Maxwell system with strong initial magnetic field. Guiding-center approximation, Multiscale Model. Simul., 6 (2007), 1026-1058. doi: 10.1137/070689383.  Google Scholar

[3]

M. Bostan, Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics, J. Differential Equations, 249 (2010), 1620-1663. doi: 10.1016/j.jde.2010.07.010.  Google Scholar

[4]

M. Bostan, Multi-scale analysis for linear first order PDEs. The finite Larmor radius regime, SIAM J. Math. Anal., 48 (2016), 2133-2188. doi: 10.1137/15M1033034.  Google Scholar

[5]

M. Bostan, Gyro-kinetic Vlasov equation in three dimensional setting. Second order approximation, SIAM J. Multiscale Model. Simul., 8 (2010), 1923-1957. doi: 10.1137/090777621.  Google Scholar

[6]

P. ChartierA. Murua and J. M. Sanz-Serna, Erratum to: Higher-order averaging, formal series and numerical integration Ⅱ: The quasi-periodic case, Found Comput Math, 17 (2017), 625-626.  doi: 10.1007/s10208-016-9311-2.  Google Scholar

[7]

P. Chartier, A. Murua and J. M. Sanz-Serna, Higher-order averaging, formal series and numerical integration Ⅲ: Error bounds, Found Comput Math, 15, 2015, 591-612. doi: 10.1007/s10208-013-9175-7.  Google Scholar

[8]

P. Chartier, A. Murua and J. M. Sanz-Serna, A formal series approach to averaging: Exponentially small error estimates, Discrete and Continuous Dynamical Systems (DCDS-A), 32 (2012), 3009-3027. doi: 10.3934/dcds.2012.32.3009.  Google Scholar

[9]

P. Chartier, A. Murua and J. M. Sanz-Serna, Higher-order averaging, formal series and numerical integration Ⅱ: The quasi-periodic case, Found Comput Math, 12 (2012), 471-508. doi: 10.1007/s10208-012-9118-8.  Google Scholar

[10]

P. Chartier, A. Murua and J. M. Sanz-Serna, Higher-order averaging, formal series and numerical integration Ⅰ : B-series, Found Comput Math, 10, 2010, 695-727. doi: 10.1007/s10208-010-9074-0.  Google Scholar

[11]

N. Crouseilles, S. Jin and M. Lemou, Nonlinear Geometric Optics method based multi-scale numerical schemes for highly-oscillatory transport equations, Math. Mod. Meth. App. Sc., 27 (2017), 2031-2070. doi: 10.1142/S0218202517500385.  Google Scholar

[12]

P. Degond and F. Filbet, On the asymptotic limit of the three dimensional Vlasov-Poisson system for large magnetic field : Formal derivation, J. Stat. Physics, 165 (2016), 765-784. doi: 10.1007/s10955-016-1645-2.  Google Scholar

[13]

E. FrénodP.-A. Raviart and E. Sonnendrücker, Two scale expansion of a singularly perturbed convection equation, J. Maths. Pures Appl., 80 (2001), 815-843.  doi: 10.1016/S0021-7824(01)01215-6.  Google Scholar

[14]

E. Frénod and E. Sonnendrücker, Long time behavior of the Vlasov equation with strong external magnetic field, Math. Models Methods Appl. Sci., 10 (2000), 539-553.  doi: 10.1142/S021820250000029X.  Google Scholar

[15]

E. Frénod and E. Sonnendrücker, The finite Larmor radius approximation, SIAM J. Math. Anal., 32 (2001), 1227-1247.  doi: 10.1137/S0036141099364243.  Google Scholar

[16]

F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field, J. Math. Pures Appl., 78 (1999), 791-817. doi: 10.1016/S0021-7824(99)00021-5.  Google Scholar

[17]

A. Murua and J. M. Sanz-Serna, Averaging and computing normal forms with word series algorithms, Discrete Mechanics, Geometric Integration and Lie-Butcher Series: DMGILBS, 115-137, Springer Proc. Math. Stat., 267, Springer, Cham, 2018 doi: 10.1007/978-3-030-01397-4_4.  Google Scholar

[18]

A. Murua and J. M. Sanz-Serna, Computing normal forms and formal invariants of dynamical systems by means of word series, Nonlinear Analysis, 138 (2016), 326-345. doi: 10.1016/j.na.2015.10.013.  Google Scholar

[19]

A. Murua and J. M. Sanz-Serna, Word series for dynamical systems and their numerical integrators, Found Comput Math, 17 (2017), 675-712.  doi: 10.1007/s10208-015-9295-3.  Google Scholar

[20]

L. M. Perko, Higher order averaging and related methods for perturbed periodic and quasi-periodic systems, SIAM J. Applied. Math., 17 (1969), 698-724.  doi: 10.1137/0117065.  Google Scholar

[21]

J. A. Sanders and F. Verhulst, Averaging Methods in Nonlinear Dynamical Systems, Applied Mathematical Sciences, Vol. 59. Springer-Verlag, 1985. doi: 10.1007/978-1-4757-4575-7.  Google Scholar

show all references

References:
[1]

S. Blanes, F. Casas, J. A. Oteo and J. Ros, A pedagogical approach to the Magnus expansion, European Journal of Physics, 31 (2010), 907-918. doi: 10.1088/0143-0807/31/4/020.  Google Scholar

[2]

M. Bostan, The Vlasov-Maxwell system with strong initial magnetic field. Guiding-center approximation, Multiscale Model. Simul., 6 (2007), 1026-1058. doi: 10.1137/070689383.  Google Scholar

[3]

M. Bostan, Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics, J. Differential Equations, 249 (2010), 1620-1663. doi: 10.1016/j.jde.2010.07.010.  Google Scholar

[4]

M. Bostan, Multi-scale analysis for linear first order PDEs. The finite Larmor radius regime, SIAM J. Math. Anal., 48 (2016), 2133-2188. doi: 10.1137/15M1033034.  Google Scholar

[5]

M. Bostan, Gyro-kinetic Vlasov equation in three dimensional setting. Second order approximation, SIAM J. Multiscale Model. Simul., 8 (2010), 1923-1957. doi: 10.1137/090777621.  Google Scholar

[6]

P. ChartierA. Murua and J. M. Sanz-Serna, Erratum to: Higher-order averaging, formal series and numerical integration Ⅱ: The quasi-periodic case, Found Comput Math, 17 (2017), 625-626.  doi: 10.1007/s10208-016-9311-2.  Google Scholar

[7]

P. Chartier, A. Murua and J. M. Sanz-Serna, Higher-order averaging, formal series and numerical integration Ⅲ: Error bounds, Found Comput Math, 15, 2015, 591-612. doi: 10.1007/s10208-013-9175-7.  Google Scholar

[8]

P. Chartier, A. Murua and J. M. Sanz-Serna, A formal series approach to averaging: Exponentially small error estimates, Discrete and Continuous Dynamical Systems (DCDS-A), 32 (2012), 3009-3027. doi: 10.3934/dcds.2012.32.3009.  Google Scholar

[9]

P. Chartier, A. Murua and J. M. Sanz-Serna, Higher-order averaging, formal series and numerical integration Ⅱ: The quasi-periodic case, Found Comput Math, 12 (2012), 471-508. doi: 10.1007/s10208-012-9118-8.  Google Scholar

[10]

P. Chartier, A. Murua and J. M. Sanz-Serna, Higher-order averaging, formal series and numerical integration Ⅰ : B-series, Found Comput Math, 10, 2010, 695-727. doi: 10.1007/s10208-010-9074-0.  Google Scholar

[11]

N. Crouseilles, S. Jin and M. Lemou, Nonlinear Geometric Optics method based multi-scale numerical schemes for highly-oscillatory transport equations, Math. Mod. Meth. App. Sc., 27 (2017), 2031-2070. doi: 10.1142/S0218202517500385.  Google Scholar

[12]

P. Degond and F. Filbet, On the asymptotic limit of the three dimensional Vlasov-Poisson system for large magnetic field : Formal derivation, J. Stat. Physics, 165 (2016), 765-784. doi: 10.1007/s10955-016-1645-2.  Google Scholar

[13]

E. FrénodP.-A. Raviart and E. Sonnendrücker, Two scale expansion of a singularly perturbed convection equation, J. Maths. Pures Appl., 80 (2001), 815-843.  doi: 10.1016/S0021-7824(01)01215-6.  Google Scholar

[14]

E. Frénod and E. Sonnendrücker, Long time behavior of the Vlasov equation with strong external magnetic field, Math. Models Methods Appl. Sci., 10 (2000), 539-553.  doi: 10.1142/S021820250000029X.  Google Scholar

[15]

E. Frénod and E. Sonnendrücker, The finite Larmor radius approximation, SIAM J. Math. Anal., 32 (2001), 1227-1247.  doi: 10.1137/S0036141099364243.  Google Scholar

[16]

F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field, J. Math. Pures Appl., 78 (1999), 791-817. doi: 10.1016/S0021-7824(99)00021-5.  Google Scholar

[17]

A. Murua and J. M. Sanz-Serna, Averaging and computing normal forms with word series algorithms, Discrete Mechanics, Geometric Integration and Lie-Butcher Series: DMGILBS, 115-137, Springer Proc. Math. Stat., 267, Springer, Cham, 2018 doi: 10.1007/978-3-030-01397-4_4.  Google Scholar

[18]

A. Murua and J. M. Sanz-Serna, Computing normal forms and formal invariants of dynamical systems by means of word series, Nonlinear Analysis, 138 (2016), 326-345. doi: 10.1016/j.na.2015.10.013.  Google Scholar

[19]

A. Murua and J. M. Sanz-Serna, Word series for dynamical systems and their numerical integrators, Found Comput Math, 17 (2017), 675-712.  doi: 10.1007/s10208-015-9295-3.  Google Scholar

[20]

L. M. Perko, Higher order averaging and related methods for perturbed periodic and quasi-periodic systems, SIAM J. Applied. Math., 17 (1969), 698-724.  doi: 10.1137/0117065.  Google Scholar

[21]

J. A. Sanders and F. Verhulst, Averaging Methods in Nonlinear Dynamical Systems, Applied Mathematical Sciences, Vol. 59. Springer-Verlag, 1985. doi: 10.1007/978-1-4757-4575-7.  Google Scholar

[1]

Emmanuel Frénod, Sever A. Hirstoaga, Eric Sonnendrücker. An exponential integrator for a highly oscillatory vlasov equation. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 169-183. doi: 10.3934/dcdss.2015.8.169

[2]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

[3]

Frédérique Charles, Bruno Després, Benoît Perthame, Rémis Sentis. Nonlinear stability of a Vlasov equation for magnetic plasmas. Kinetic & Related Models, 2013, 6 (2) : 269-290. doi: 10.3934/krm.2013.6.269

[4]

Philippe Chartier, Ander Murua, Jesús María Sanz-Serna. A formal series approach to averaging: Exponentially small error estimates. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3009-3027. doi: 10.3934/dcds.2012.32.3009

[5]

Philippe Chartier, Norbert J. Mauser, Florian Méhats, Yong Zhang. Solving highly-oscillatory NLS with SAM: Numerical efficiency and long-time behavior. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1327-1349. doi: 10.3934/dcdss.2016053

[6]

John Burke, Edgar Knobloch. Normal form for spatial dynamics in the Swift-Hohenberg equation. Conference Publications, 2007, 2007 (Special) : 170-180. doi: 10.3934/proc.2007.2007.170

[7]

Yuanjie Lei, Huijiang Zhao. The Vlasov-Maxwell-Boltzmann system near Maxwellians with strong background magnetic field. Kinetic & Related Models, 2020, 13 (3) : 599-621. doi: 10.3934/krm.2020020

[8]

Mihaï Bostan. Asymptotic behavior for the Vlasov-Poisson equations with strong uniform magnetic field and general initial conditions. Kinetic & Related Models, 2020, 13 (3) : 531-548. doi: 10.3934/krm.2020018

[9]

Mihai Bostan. On the Boltzmann equation for charged particle beams under the effect of strong magnetic fields. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 339-371. doi: 10.3934/dcdsb.2015.20.339

[10]

S. L. Ma'u, P. Ramankutty. An averaging method for the Helmholtz equation. Conference Publications, 2003, 2003 (Special) : 604-609. doi: 10.3934/proc.2003.2003.604

[11]

Naoufel Ben Abdallah, Raymond El Hajj. Diffusion and guiding center approximation for particle transport in strong magnetic fields. Kinetic & Related Models, 2008, 1 (3) : 331-354. doi: 10.3934/krm.2008.1.331

[12]

Alex H. Ardila. Stability of standing waves for a nonlinear SchrÖdinger equation under an external magnetic field. Communications on Pure & Applied Analysis, 2018, 17 (1) : 163-175. doi: 10.3934/cpaa.2018010

[13]

Tetsuya Ishiwata, Kota Kumazaki. Structure preserving finite difference scheme for the Landau-Lifshitz equation with applied magnetic field. Conference Publications, 2015, 2015 (special) : 644-651. doi: 10.3934/proc.2015.0644

[14]

Mihai Bostan, Thierry Goudon. Low field regime for the relativistic Vlasov-Maxwell-Fokker-Planck system; the one and one half dimensional case. Kinetic & Related Models, 2008, 1 (1) : 139-170. doi: 10.3934/krm.2008.1.139

[15]

Andrei Fursikov. Stabilization of the simplest normal parabolic equation. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1815-1854. doi: 10.3934/cpaa.2014.13.1815

[16]

Marco Abate, Francesca Tovena. Formal normal forms for holomorphic maps tangent to the identity. Conference Publications, 2005, 2005 (Special) : 1-10. doi: 10.3934/proc.2005.2005.1

[17]

G. Gentile, V. Mastropietro. Convergence of Lindstedt series for the non linear wave equation. Communications on Pure & Applied Analysis, 2004, 3 (3) : 509-514. doi: 10.3934/cpaa.2004.3.509

[18]

Claude Le Bris, Frédéric Legoll. Integrators for highly oscillatory Hamiltonian systems: An homogenization approach. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 347-373. doi: 10.3934/dcdsb.2010.13.347

[19]

Hermann Brunner. On Volterra integral operators with highly oscillatory kernels. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 915-929. doi: 10.3934/dcds.2014.34.915

[20]

Yahong Peng, Yaguang Wang. Reflection of highly oscillatory waves with continuous oscillatory spectra for semilinear hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1293-1306. doi: 10.3934/dcds.2009.24.1293

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (19)
  • HTML views (45)
  • Cited by (0)

[Back to Top]