
-
Previous Article
Global existence theorem for a model governing the motion of two cell populations
- KRM Home
- This Issue
-
Next Article
Confined steady states of the relativistic Vlasov–Maxwell system in an infinitely long cylinder
On the entropic property of the Ellipsoidal Statistical model with the prandtl number below 2/3
1. | Department of Aeronautics and Astronautics & Advanced Engineering Research Center, Kyoto University, Kyoto 615-8540, Japan |
2. | Department of Aeronautics and Astronautics, Kyoto University, Kyoto 615-8540, Japan |
Entropic property of the Ellipsoidal Statistical model with the Prandtl number Pr below 2/3 is discussed. Although 2/3 is the lower bound of Pr for the H theorem to hold unconditionally, it is shown that the theorem still holds even for $ \mathrm{Pr}<2/3 $, provided that anisotropy of stress tensor satisfies a certain criterion. The practical tolerance of that criterion is assessed numerically by the strong normal shock wave and the Couette flow problems. A couple of moving plate tests are also conducted.
References:
[1] |
P. Andries, P. Le Tallec, J.-P. Perlat and B. Perthame,
The Gaussian-BGK model of Boltzmann equation with small Prandtl number, Eur. J. Mech. B-Fluids, 19 (2000), 813-830.
doi: 10.1016/S0997-7546(00)01103-1. |
[2] |
G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, 1967.
![]() |
[3] |
P. L. Bhatnagar, E. P. Gross and M. Krook,
A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94 (1954), 511-525.
doi: 10.1103/PhysRev.94.511. |
[4] |
S. Brull and J. Schneider,
A new approach for the ellipsoidal statistical model, Contin. Mech. Thermodyn., 20 (2008), 63-74.
doi: 10.1007/s00161-008-0068-y. |
[5] |
C. K. Chu,
Kinetic-theoretic description of the formation of a shock wave, Phys. Fluids, 8 (1965), 12-22.
doi: 10.1063/1.1761077. |
[6] |
H. Funagane, S. Takata, K. Aoki and K. Kugimoto,
Poiseuille flow and thermal transpiration of a rarefied polyatomic gas through a circular tube with applications to microflows, Bollettino U. M. I. Ser. IX, Ⅳ (2011), 19-46.
|
[7] |
M. A. Gallis and J. R. Torczynski, Investigation of the ellipsoidal-statistical Bhatnagar–Gross–Krook kinetic model applied to gas-phase transport of heat and tangential momentum between parallel walls, Phys. Fluids, 23 (2011), 030601.
doi: 10.1063/1.3558869. |
[8] |
M. Groppi, S. Monica and G. Spiga, A kinetic ellipsoidal BGK model for a binary gas mixture, Europhys. Lett., 96 (2011), 64002.
doi: 10.1209/0295-5075/96/64002. |
[9] |
L. H. Holway,
New statistical models for kinetic theory: Methods of construction, Phys. Fluids, 9 (1966), 1658-1673.
doi: 10.1063/1.1761920. |
[10] |
C. Klingenberg, M. Pirner and G. Puppo, Kinetic ES-BGK models for a multi-component gas mixture, in XVI International Conference on Hyperbolic Problems: Theory, Numerics, Applications, Springer, (2016), 195–208. Google Scholar |
[11] |
H. W. Liepmann and A. Roshko, Elements of Gasdynamics, Dover, New York, 2001, Sec. 2.13. |
[12] |
J. Meng, L. Wu, J. M. Reese and Y. Zhang,
Assessment of the ellipsoidal-statistical Bhatnagar–Gross–Krook model for force-driven Poiseuille flows, J. Comp. Phys., 251 (2013), 383-395.
doi: 10.1016/j.jcp.2013.05.045. |
[13] |
Y. Sone, Kinetic theory analysis of linearized Rayleigh problem, J. Phys. Soc. Jpn, 19 (1964), 1463-1473. Google Scholar |
[14] |
Y. Sone, Molecular Gas Dynamics, Birkhäuser, Boston, 2007, Sec. 3.1.9; Supplementary Notes and Errata is available from Kyoto University Research Information Repository (http://hdl.handle.net/2433/66098).
doi: 10.1007/978-0-8176-4573-1. |
[15] |
S. Takata, H. Funagane and K. Aoki,
Fluid modeling for the Knudsen compressor: Case of polyatomic gases, Kinetic and Related Models, 3 (2010), 353-372.
doi: 10.3934/krm.2010.3.353. |
show all references
References:
[1] |
P. Andries, P. Le Tallec, J.-P. Perlat and B. Perthame,
The Gaussian-BGK model of Boltzmann equation with small Prandtl number, Eur. J. Mech. B-Fluids, 19 (2000), 813-830.
doi: 10.1016/S0997-7546(00)01103-1. |
[2] |
G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, 1967.
![]() |
[3] |
P. L. Bhatnagar, E. P. Gross and M. Krook,
A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94 (1954), 511-525.
doi: 10.1103/PhysRev.94.511. |
[4] |
S. Brull and J. Schneider,
A new approach for the ellipsoidal statistical model, Contin. Mech. Thermodyn., 20 (2008), 63-74.
doi: 10.1007/s00161-008-0068-y. |
[5] |
C. K. Chu,
Kinetic-theoretic description of the formation of a shock wave, Phys. Fluids, 8 (1965), 12-22.
doi: 10.1063/1.1761077. |
[6] |
H. Funagane, S. Takata, K. Aoki and K. Kugimoto,
Poiseuille flow and thermal transpiration of a rarefied polyatomic gas through a circular tube with applications to microflows, Bollettino U. M. I. Ser. IX, Ⅳ (2011), 19-46.
|
[7] |
M. A. Gallis and J. R. Torczynski, Investigation of the ellipsoidal-statistical Bhatnagar–Gross–Krook kinetic model applied to gas-phase transport of heat and tangential momentum between parallel walls, Phys. Fluids, 23 (2011), 030601.
doi: 10.1063/1.3558869. |
[8] |
M. Groppi, S. Monica and G. Spiga, A kinetic ellipsoidal BGK model for a binary gas mixture, Europhys. Lett., 96 (2011), 64002.
doi: 10.1209/0295-5075/96/64002. |
[9] |
L. H. Holway,
New statistical models for kinetic theory: Methods of construction, Phys. Fluids, 9 (1966), 1658-1673.
doi: 10.1063/1.1761920. |
[10] |
C. Klingenberg, M. Pirner and G. Puppo, Kinetic ES-BGK models for a multi-component gas mixture, in XVI International Conference on Hyperbolic Problems: Theory, Numerics, Applications, Springer, (2016), 195–208. Google Scholar |
[11] |
H. W. Liepmann and A. Roshko, Elements of Gasdynamics, Dover, New York, 2001, Sec. 2.13. |
[12] |
J. Meng, L. Wu, J. M. Reese and Y. Zhang,
Assessment of the ellipsoidal-statistical Bhatnagar–Gross–Krook model for force-driven Poiseuille flows, J. Comp. Phys., 251 (2013), 383-395.
doi: 10.1016/j.jcp.2013.05.045. |
[13] |
Y. Sone, Kinetic theory analysis of linearized Rayleigh problem, J. Phys. Soc. Jpn, 19 (1964), 1463-1473. Google Scholar |
[14] |
Y. Sone, Molecular Gas Dynamics, Birkhäuser, Boston, 2007, Sec. 3.1.9; Supplementary Notes and Errata is available from Kyoto University Research Information Repository (http://hdl.handle.net/2433/66098).
doi: 10.1007/978-0-8176-4573-1. |
[15] |
S. Takata, H. Funagane and K. Aoki,
Fluid modeling for the Knudsen compressor: Case of polyatomic gases, Kinetic and Related Models, 3 (2010), 353-372.
doi: 10.3934/krm.2010.3.353. |




2 | 5 | 10 | 20 | 40 | 60 | |
0.2786 | 0.5506 | 0.6137 | 0.6387 | 0.6478 | 0.6499 | |
0.5184 | 0.5454 | 0.5539 | 0.5576 | 0.5590 | 0.5593 | |
0.7776 | 0.8181 | 0.8309 | 0.8364 | 0.8385 | 0.8390 |
2 | 5 | 10 | 20 | 40 | 60 | |
0.2786 | 0.5506 | 0.6137 | 0.6387 | 0.6478 | 0.6499 | |
0.5184 | 0.5454 | 0.5539 | 0.5576 | 0.5590 | 0.5593 | |
0.7776 | 0.8181 | 0.8309 | 0.8364 | 0.8385 | 0.8390 |
[1] |
Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051 |
[2] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[3] |
François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221 |
[4] |
Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495 |
[5] |
Sabine Hittmeir, Laura Kanzler, Angelika Manhart, Christian Schmeiser. Kinetic modelling of colonies of myxobacteria. Kinetic & Related Models, 2021, 14 (1) : 1-24. doi: 10.3934/krm.2020046 |
[6] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[7] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284 |
[8] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020374 |
[9] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065 |
[10] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020317 |
[11] |
Gi-Chan Bae, Christian Klingenberg, Marlies Pirner, Seok-Bae Yun. BGK model of the multi-species Uehling-Uhlenbeck equation. Kinetic & Related Models, 2021, 14 (1) : 25-44. doi: 10.3934/krm.2020047 |
[12] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003 |
[13] |
Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521 |
[14] |
Hongfei Yang, Xiaofeng Ding, Raymond Chan, Hui Hu, Yaxin Peng, Tieyong Zeng. A new initialization method based on normed statistical spaces in deep networks. Inverse Problems & Imaging, 2021, 15 (1) : 147-158. doi: 10.3934/ipi.2020045 |
[15] |
Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105 |
[16] |
Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020395 |
[17] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020451 |
[18] |
Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054 |
[19] |
Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292 |
[20] |
Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007 |
2019 Impact Factor: 1.311
Tools
Metrics
Other articles
by authors
[Back to Top]