doi: 10.3934/krm.2020041

On the entropic property of the Ellipsoidal Statistical model with the prandtl number below 2/3

1. 

Department of Aeronautics and Astronautics & Advanced Engineering Research Center, Kyoto University, Kyoto 615-8540, Japan

2. 

Department of Aeronautics and Astronautics, Kyoto University, Kyoto 615-8540, Japan

* Corresponding author: Shigeru TAKATA

Received  April 2020 Revised  July 2020 Published  September 2020

Fund Project: The present work is supported in part by KAKENHI from JSPS (No. 17K18840)

Entropic property of the Ellipsoidal Statistical model with the Prandtl number Pr below 2/3 is discussed. Although 2/3 is the lower bound of Pr for the H theorem to hold unconditionally, it is shown that the theorem still holds even for $ \mathrm{Pr}<2/3 $, provided that anisotropy of stress tensor satisfies a certain criterion. The practical tolerance of that criterion is assessed numerically by the strong normal shock wave and the Couette flow problems. A couple of moving plate tests are also conducted.

Citation: Shigeru Takata, Masanari Hattori, Takumu Miyauchi. On the entropic property of the Ellipsoidal Statistical model with the prandtl number below 2/3. Kinetic & Related Models, doi: 10.3934/krm.2020041
References:
[1]

P. AndriesP. Le TallecJ.-P. Perlat and B. Perthame, The Gaussian-BGK model of Boltzmann equation with small Prandtl number, Eur. J. Mech. B-Fluids, 19 (2000), 813-830.  doi: 10.1016/S0997-7546(00)01103-1.  Google Scholar

[2] G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, 1967.   Google Scholar
[3]

P. L. BhatnagarE. P. Gross and M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94 (1954), 511-525.  doi: 10.1103/PhysRev.94.511.  Google Scholar

[4]

S. Brull and J. Schneider, A new approach for the ellipsoidal statistical model, Contin. Mech. Thermodyn., 20 (2008), 63-74.  doi: 10.1007/s00161-008-0068-y.  Google Scholar

[5]

C. K. Chu, Kinetic-theoretic description of the formation of a shock wave, Phys. Fluids, 8 (1965), 12-22.  doi: 10.1063/1.1761077.  Google Scholar

[6]

H. FunaganeS. TakataK. Aoki and K. Kugimoto, Poiseuille flow and thermal transpiration of a rarefied polyatomic gas through a circular tube with applications to microflows, Bollettino U. M. I. Ser. IX, (2011), 19-46.   Google Scholar

[7]

M. A. Gallis and J. R. Torczynski, Investigation of the ellipsoidal-statistical Bhatnagar–Gross–Krook kinetic model applied to gas-phase transport of heat and tangential momentum between parallel walls, Phys. Fluids, 23 (2011), 030601. doi: 10.1063/1.3558869.  Google Scholar

[8]

M. Groppi, S. Monica and G. Spiga, A kinetic ellipsoidal BGK model for a binary gas mixture, Europhys. Lett., 96 (2011), 64002. doi: 10.1209/0295-5075/96/64002.  Google Scholar

[9]

L. H. Holway, New statistical models for kinetic theory: Methods of construction, Phys. Fluids, 9 (1966), 1658-1673.  doi: 10.1063/1.1761920.  Google Scholar

[10]

C. Klingenberg, M. Pirner and G. Puppo, Kinetic ES-BGK models for a multi-component gas mixture, in XVI International Conference on Hyperbolic Problems: Theory, Numerics, Applications, Springer, (2016), 195–208. Google Scholar

[11]

H. W. Liepmann and A. Roshko, Elements of Gasdynamics, Dover, New York, 2001, Sec. 2.13.  Google Scholar

[12]

J. MengL. WuJ. M. Reese and Y. Zhang, Assessment of the ellipsoidal-statistical Bhatnagar–Gross–Krook model for force-driven Poiseuille flows, J. Comp. Phys., 251 (2013), 383-395.  doi: 10.1016/j.jcp.2013.05.045.  Google Scholar

[13]

Y. Sone, Kinetic theory analysis of linearized Rayleigh problem, J. Phys. Soc. Jpn, 19 (1964), 1463-1473.   Google Scholar

[14]

Y. Sone, Molecular Gas Dynamics, Birkhäuser, Boston, 2007, Sec. 3.1.9; Supplementary Notes and Errata is available from Kyoto University Research Information Repository (http://hdl.handle.net/2433/66098). doi: 10.1007/978-0-8176-4573-1.  Google Scholar

[15]

S. TakataH. Funagane and K. Aoki, Fluid modeling for the Knudsen compressor: Case of polyatomic gases, Kinetic and Related Models, 3 (2010), 353-372.  doi: 10.3934/krm.2010.3.353.  Google Scholar

show all references

References:
[1]

P. AndriesP. Le TallecJ.-P. Perlat and B. Perthame, The Gaussian-BGK model of Boltzmann equation with small Prandtl number, Eur. J. Mech. B-Fluids, 19 (2000), 813-830.  doi: 10.1016/S0997-7546(00)01103-1.  Google Scholar

[2] G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, 1967.   Google Scholar
[3]

P. L. BhatnagarE. P. Gross and M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94 (1954), 511-525.  doi: 10.1103/PhysRev.94.511.  Google Scholar

[4]

S. Brull and J. Schneider, A new approach for the ellipsoidal statistical model, Contin. Mech. Thermodyn., 20 (2008), 63-74.  doi: 10.1007/s00161-008-0068-y.  Google Scholar

[5]

C. K. Chu, Kinetic-theoretic description of the formation of a shock wave, Phys. Fluids, 8 (1965), 12-22.  doi: 10.1063/1.1761077.  Google Scholar

[6]

H. FunaganeS. TakataK. Aoki and K. Kugimoto, Poiseuille flow and thermal transpiration of a rarefied polyatomic gas through a circular tube with applications to microflows, Bollettino U. M. I. Ser. IX, (2011), 19-46.   Google Scholar

[7]

M. A. Gallis and J. R. Torczynski, Investigation of the ellipsoidal-statistical Bhatnagar–Gross–Krook kinetic model applied to gas-phase transport of heat and tangential momentum between parallel walls, Phys. Fluids, 23 (2011), 030601. doi: 10.1063/1.3558869.  Google Scholar

[8]

M. Groppi, S. Monica and G. Spiga, A kinetic ellipsoidal BGK model for a binary gas mixture, Europhys. Lett., 96 (2011), 64002. doi: 10.1209/0295-5075/96/64002.  Google Scholar

[9]

L. H. Holway, New statistical models for kinetic theory: Methods of construction, Phys. Fluids, 9 (1966), 1658-1673.  doi: 10.1063/1.1761920.  Google Scholar

[10]

C. Klingenberg, M. Pirner and G. Puppo, Kinetic ES-BGK models for a multi-component gas mixture, in XVI International Conference on Hyperbolic Problems: Theory, Numerics, Applications, Springer, (2016), 195–208. Google Scholar

[11]

H. W. Liepmann and A. Roshko, Elements of Gasdynamics, Dover, New York, 2001, Sec. 2.13.  Google Scholar

[12]

J. MengL. WuJ. M. Reese and Y. Zhang, Assessment of the ellipsoidal-statistical Bhatnagar–Gross–Krook model for force-driven Poiseuille flows, J. Comp. Phys., 251 (2013), 383-395.  doi: 10.1016/j.jcp.2013.05.045.  Google Scholar

[13]

Y. Sone, Kinetic theory analysis of linearized Rayleigh problem, J. Phys. Soc. Jpn, 19 (1964), 1463-1473.   Google Scholar

[14]

Y. Sone, Molecular Gas Dynamics, Birkhäuser, Boston, 2007, Sec. 3.1.9; Supplementary Notes and Errata is available from Kyoto University Research Information Repository (http://hdl.handle.net/2433/66098). doi: 10.1007/978-0-8176-4573-1.  Google Scholar

[15]

S. TakataH. Funagane and K. Aoki, Fluid modeling for the Knudsen compressor: Case of polyatomic gases, Kinetic and Related Models, 3 (2010), 353-372.  doi: 10.3934/krm.2010.3.353.  Google Scholar

Figure 1.  Structure of the shock wave for typical Mach numbers $ M_- $ in the case of $ \mathrm{Pr} = 2/3 $. (a) $ M_- = 2 $, (b) $ M_- = 5 $, (c) $ M_- = 20 $, and (d) $ M_- = 40 $. Here, $ \ell_- $ is the mean free path of molecules in the equilibrium state at rest with density $ \rho_- $ and temperature $ T_- $. In each panel, solid lines indicate $ \rho_* = (\rho-\rho_-)/(\rho_+-\rho_-) $, $ u_* = (v_1-u_+)/(u_–u_+) $, and $ T_* = (T-T_-)/(T_+-T_-) $ respectively, while a dash-dotted line indicates $ \epsilon $
Figure 2.  The maximum value of $ \epsilon $ vs. $ (3/2)\mathrm{Pr} $ for various upstream Mach numbers $ M_- $. Symbols indicate the results of computations. The results of common $ M_- $ are connected by solid lines in the acceptable range of $ \mathrm{Pr} $ and by dashed lines in the range where condition (8) is violated
Figure 3.  The functions $ \mathcal{F}_D $ and $ \epsilon_S $ in the criterion (16). The solid lines indicate $ \mathcal{F}_D $ for $ (3/2)\mathrm{Pr} = 0.76, 0.78, 0.8,\dots,0.96 $, while the dashed line indicates $ \epsilon_S $
Figure 4.  The function $ \epsilon_P $ and the dimensionless density $ \hat{\rho} $ in the range $ -5<\hat{U}<5 $. (a) $ \epsilon_P $, (b) $ \hat{\rho} $. In (a), the values of $ \mathcal{S}(\mathrm{Pr}) $ for $ (3/2)\mathrm{Pr} = 0.76,0.8,0.84,\dots,0.96 $ are also indicated by dash-dotted lines for reference
Table 1.  The maximum $ \epsilon $ for various Mach numbers $ M_- $ in the case of $ \mathrm{Pr} = 2/3 $. $ \mathrm{Pr}_* $ is the lower bound of acceptable Prandtl number suggested by $ \max\epsilon = \mathcal{S}(\mathrm{Pr}_*) $; see (12)
$ M_- $ 2 5 10 20 40 60
$ \max\epsilon $ 0.2786 0.5506 0.6137 0.6387 0.6478 0.6499
$ \mathrm{Pr}_* $ 0.5184 0.5454 0.5539 0.5576 0.5590 0.5593
$ (3/2)\mathrm{Pr}_* $ 0.7776 0.8181 0.8309 0.8364 0.8385 0.8390
$ M_- $ 2 5 10 20 40 60
$ \max\epsilon $ 0.2786 0.5506 0.6137 0.6387 0.6478 0.6499
$ \mathrm{Pr}_* $ 0.5184 0.5454 0.5539 0.5576 0.5590 0.5593
$ (3/2)\mathrm{Pr}_* $ 0.7776 0.8181 0.8309 0.8364 0.8385 0.8390
[1]

Lei Jing, Jiawei Sun. Global existence and long time behavior of the Ellipsoidal-Statistical-Fokker-Planck model for diatomic gases. Kinetic & Related Models, 2020, 13 (2) : 373-400. doi: 10.3934/krm.2020013

[2]

Gilberto M. Kremer, Filipe Oliveira, Ana Jacinta Soares. $\mathcal H$-Theorem and trend to equilibrium of chemically reacting mixtures of gases. Kinetic & Related Models, 2009, 2 (2) : 333-343. doi: 10.3934/krm.2009.2.333

[3]

Jacek Polewczak, Ana Jacinta Soares. On modified simple reacting spheres kinetic model for chemically reactive gases. Kinetic & Related Models, 2017, 10 (2) : 513-539. doi: 10.3934/krm.2017020

[4]

Gilberto M. Kremer, Wilson Marques Jr.. Fourteen moment theory for granular gases. Kinetic & Related Models, 2011, 4 (1) : 317-331. doi: 10.3934/krm.2011.4.317

[5]

Seok-Bae Yun. Entropy production for ellipsoidal BGK model of the Boltzmann equation. Kinetic & Related Models, 2016, 9 (3) : 605-619. doi: 10.3934/krm.2016009

[6]

Céline Baranger, Marzia Bisi, Stéphane Brull, Laurent Desvillettes. On the Chapman-Enskog asymptotics for a mixture of monoatomic and polyatomic rarefied gases. Kinetic & Related Models, 2018, 11 (4) : 821-858. doi: 10.3934/krm.2018033

[7]

Manuel Torrilhon. H-Theorem for nonlinear regularized 13-moment equations in kinetic gas theory. Kinetic & Related Models, 2012, 5 (1) : 185-201. doi: 10.3934/krm.2012.5.185

[8]

Raffaele Esposito, Mario Pulvirenti. Rigorous validity of the Boltzmann equation for a thin layer of a rarefied gas. Kinetic & Related Models, 2010, 3 (2) : 281-297. doi: 10.3934/krm.2010.3.281

[9]

Shigeru Takata, Hitoshi Funagane, Kazuo Aoki. Fluid modeling for the Knudsen compressor: Case of polyatomic gases. Kinetic & Related Models, 2010, 3 (2) : 353-372. doi: 10.3934/krm.2010.3.353

[10]

Eugenio Aulisa, Lidia Bloshanskaya, Akif Ibragimov. Well productivity index for compressible fluids and gases. Evolution Equations & Control Theory, 2016, 5 (1) : 1-36. doi: 10.3934/eect.2016.5.1

[11]

Zhongyi Huang, Peter A. Markowich, Christof Sparber. Numerical simulation of trapped dipolar quantum gases: Collapse studies and vortex dynamics. Kinetic & Related Models, 2010, 3 (1) : 181-194. doi: 10.3934/krm.2010.3.181

[12]

Pedro M. Jordan. Second-sound phenomena in inviscid, thermally relaxing gases. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2189-2205. doi: 10.3934/dcdsb.2014.19.2189

[13]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[14]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[15]

Marc Briant. Perturbative theory for the Boltzmann equation in bounded domains with different boundary conditions. Kinetic & Related Models, 2017, 10 (2) : 329-371. doi: 10.3934/krm.2017014

[16]

Daewa Kim, Annalisa Quaini. A kinetic theory approach to model pedestrian dynamics in bounded domains with obstacles. Kinetic & Related Models, 2019, 12 (6) : 1273-1296. doi: 10.3934/krm.2019049

[17]

B. Anwasia, M. Bisi, F. Salvarani, A. J. Soares. On the Maxwell-Stefan diffusion limit for a reactive mixture of polyatomic gases in non-isothermal setting. Kinetic & Related Models, 2020, 13 (1) : 63-95. doi: 10.3934/krm.2020003

[18]

P. M. Jordan. The effects of coupling on finite-amplitude acoustic traveling waves in thermoviscous gases: Blackstock's models. Evolution Equations & Control Theory, 2016, 5 (3) : 383-397. doi: 10.3934/eect.2016010

[19]

Yulan Xu, Yanping Dou. Large BV solutions to Euler equations in the isothermal self-gravitating gases with damping. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1451-1467. doi: 10.3934/cpaa.2009.8.1451

[20]

Fei Hou, Huicheng Yin. On global axisymmetric solutions to 2D compressible full Euler equations of Chaplygin gases. Discrete & Continuous Dynamical Systems - A, 2020, 40 (3) : 1435-1492. doi: 10.3934/dcds.2020083

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (21)
  • HTML views (50)
  • Cited by (0)

[Back to Top]