doi: 10.3934/krm.2020042

Global existence theorem for a model governing the motion of two cell populations

Department of Mathematics & Statistics, Mississippi State University, Mississippi State, MS 39762, USA

Received  April 2020 Revised  July 2020 Published  September 2020

This article is concerned with the existence of a weak solution to the initial boundary problem for a cross-diffusion system which arises in the study of two cell population growth. The mathematical challenge is due to the fact that the coefficient matrix is non-symmetric and degenerate in the sense that its determinant is $ 0 $. The existence assertion is established by exploring the fact that the total population density satisfies a porous media equation.

Citation: Brock C. Price, Xiangsheng Xu. Global existence theorem for a model governing the motion of two cell populations. Kinetic & Related Models, doi: 10.3934/krm.2020042
References:
[1]

M. Bertsch, M. E. Gurtin and D. Hilhorst, On interacting populations that disperse to avoid crowding: the case of equal dispersal velocities, Nonlinear Anal., 11 (1987), 493-499. doi: 10.1016/0362-546X(87)90067-8.  Google Scholar

[2]

M. BertschM. E. GurtinD. Hilhorst and L. A. Peletier, On interacting populations that disperse to avoid crowding: Preservation of segregation, J. Math. Biology, 23 (1985), 1-13.  doi: 10.1007/BF00276555.  Google Scholar

[3]

F. BubbaB. PerthameC. Pouchol and M. Schmidtchen, Hele-Shaw limit for a system of two reaction-(cross-)diffusion equations for living tissues, Arch. Rational Mech. Anal., 236 (2020), 735-766.  doi: 10.1007/s00205-019-01479-1.  Google Scholar

[4]

H. Byrne and M. A. J. Chaplain, Modelling the role of cell-cell adhesion in the growth and development of carcinomas, Mathematical and Computer Modelling, 24 (1996), 1-17.  doi: 10.1016/S0895-7177(96)00174-4.  Google Scholar

[5]

H. Byrne and D. Drasdo, Individual-based and continuum models of growing cell populations: A comparison, Journal of mathematical biology, 58 (2009), 657-687.  doi: 10.1007/s00285-008-0212-0.  Google Scholar

[6]

J. A. CarrilloS. FagioliF. Santambrogio and M. Schmidtchen, Splitting schemes & segregation in reaction-(cross-)diffusion systems, SIAM J. Math. Anal., 50 (2018), 5695-5718.  doi: 10.1137/17M1158379.  Google Scholar

[7]

X. ChenE. S. Daus and A. Jüngel, Global existence analysis of cross-diffusion population systems for multiple species, Arch. Ration. Mech. Anal., 227 (2018), 715-747.  doi: 10.1007/s00205-017-1172-6.  Google Scholar

[8]

X. Chen and A. Jüngel, When do cross-diffusion systems have an entropy structure? arXiv: 1908.06873, [math.AP], 2019. Google Scholar

[9]

E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-0895-2.  Google Scholar

[10]

L. C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS #74, American Mathematical Society, 1990. Third printing, 2002. doi: 10.1090/cbms/074.  Google Scholar

[11]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[12]

M. E. Gurtin and A. C. Pipkin, A note on interacting populations that disperse to avoid crowding, Quarterly Appl. Math., 42 (1984), 87-94.  doi: 10.1090/qam/736508.  Google Scholar

[13]

P. GwiazdaB. Perthame and A. Świerczewska-Gwiazdak, A two species hyperbolic-parabolic model of tissue growth, Comm. Partial Differential Equations, 44 (2019), 1605-1618.  doi: 10.1080/03605302.2019.1650064.  Google Scholar

[14]

A. Jüngel, The boundedness-by-entropy method for cross-diffusion systems, Nonlinearity, 28 (2015), 1963-2001.  doi: 10.1088/0951-7715/28/6/1963.  Google Scholar

[15]

Q. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, Tran. Math. Monographs, Vol. 23, AMS, Providence, RI, 1968.  Google Scholar

[16]

T. LorenziA. Lorz and B. Perthame, On interfaces between cell populations with different mobilities, Kinetic and Related Models, 10 (2017), 299-311.  doi: 10.3934/krm.2017012.  Google Scholar

[17]

J. Simon, Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[18]

Temam, Navier-Stokes Equations: Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, RI, 2001. doi: 10.1090/chel/343.  Google Scholar

show all references

References:
[1]

M. Bertsch, M. E. Gurtin and D. Hilhorst, On interacting populations that disperse to avoid crowding: the case of equal dispersal velocities, Nonlinear Anal., 11 (1987), 493-499. doi: 10.1016/0362-546X(87)90067-8.  Google Scholar

[2]

M. BertschM. E. GurtinD. Hilhorst and L. A. Peletier, On interacting populations that disperse to avoid crowding: Preservation of segregation, J. Math. Biology, 23 (1985), 1-13.  doi: 10.1007/BF00276555.  Google Scholar

[3]

F. BubbaB. PerthameC. Pouchol and M. Schmidtchen, Hele-Shaw limit for a system of two reaction-(cross-)diffusion equations for living tissues, Arch. Rational Mech. Anal., 236 (2020), 735-766.  doi: 10.1007/s00205-019-01479-1.  Google Scholar

[4]

H. Byrne and M. A. J. Chaplain, Modelling the role of cell-cell adhesion in the growth and development of carcinomas, Mathematical and Computer Modelling, 24 (1996), 1-17.  doi: 10.1016/S0895-7177(96)00174-4.  Google Scholar

[5]

H. Byrne and D. Drasdo, Individual-based and continuum models of growing cell populations: A comparison, Journal of mathematical biology, 58 (2009), 657-687.  doi: 10.1007/s00285-008-0212-0.  Google Scholar

[6]

J. A. CarrilloS. FagioliF. Santambrogio and M. Schmidtchen, Splitting schemes & segregation in reaction-(cross-)diffusion systems, SIAM J. Math. Anal., 50 (2018), 5695-5718.  doi: 10.1137/17M1158379.  Google Scholar

[7]

X. ChenE. S. Daus and A. Jüngel, Global existence analysis of cross-diffusion population systems for multiple species, Arch. Ration. Mech. Anal., 227 (2018), 715-747.  doi: 10.1007/s00205-017-1172-6.  Google Scholar

[8]

X. Chen and A. Jüngel, When do cross-diffusion systems have an entropy structure? arXiv: 1908.06873, [math.AP], 2019. Google Scholar

[9]

E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-0895-2.  Google Scholar

[10]

L. C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS #74, American Mathematical Society, 1990. Third printing, 2002. doi: 10.1090/cbms/074.  Google Scholar

[11]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[12]

M. E. Gurtin and A. C. Pipkin, A note on interacting populations that disperse to avoid crowding, Quarterly Appl. Math., 42 (1984), 87-94.  doi: 10.1090/qam/736508.  Google Scholar

[13]

P. GwiazdaB. Perthame and A. Świerczewska-Gwiazdak, A two species hyperbolic-parabolic model of tissue growth, Comm. Partial Differential Equations, 44 (2019), 1605-1618.  doi: 10.1080/03605302.2019.1650064.  Google Scholar

[14]

A. Jüngel, The boundedness-by-entropy method for cross-diffusion systems, Nonlinearity, 28 (2015), 1963-2001.  doi: 10.1088/0951-7715/28/6/1963.  Google Scholar

[15]

Q. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, Tran. Math. Monographs, Vol. 23, AMS, Providence, RI, 1968.  Google Scholar

[16]

T. LorenziA. Lorz and B. Perthame, On interfaces between cell populations with different mobilities, Kinetic and Related Models, 10 (2017), 299-311.  doi: 10.3934/krm.2017012.  Google Scholar

[17]

J. Simon, Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[18]

Temam, Navier-Stokes Equations: Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, RI, 2001. doi: 10.1090/chel/343.  Google Scholar

[1]

Anotida Madzvamuse, Raquel Barreira. Domain-growth-induced patterning for reaction-diffusion systems with linear cross-diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2775-2801. doi: 10.3934/dcdsb.2018163

[2]

Anotida Madzvamuse, Hussaini Ndakwo, Raquel Barreira. Stability analysis of reaction-diffusion models on evolving domains: The effects of cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2133-2170. doi: 10.3934/dcds.2016.36.2133

[3]

Hideki Murakawa. A relation between cross-diffusion and reaction-diffusion. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 147-158. doi: 10.3934/dcdss.2012.5.147

[4]

Kousuke Kuto, Yoshio Yamada. On limit systems for some population models with cross-diffusion. Discrete & Continuous Dynamical Systems - B, 2012, 17 (8) : 2745-2769. doi: 10.3934/dcdsb.2012.17.2745

[5]

Michael Winkler, Dariusz Wrzosek. Preface: Analysis of cross-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : ⅰ-ⅰ. doi: 10.3934/dcdss.20202i

[6]

Mostafa Bendahmane, Kenneth H. Karlsen. Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue. Networks & Heterogeneous Media, 2006, 1 (1) : 185-218. doi: 10.3934/nhm.2006.1.185

[7]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020405

[8]

Robert Stephen Cantrell, Xinru Cao, King-Yeung Lam, Tian Xiang. A PDE model of intraguild predation with cross-diffusion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3653-3661. doi: 10.3934/dcdsb.2017145

[9]

Yuan Lou, Wei-Ming Ni, Yaping Wu. On the global existence of a cross-diffusion system. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 193-203. doi: 10.3934/dcds.1998.4.193

[10]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589

[11]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Regularity of global attractors for reaction-diffusion systems with no more than quadratic growth. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1899-1908. doi: 10.3934/dcdsb.2017113

[12]

Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515

[13]

Laurent Desvillettes, Klemens Fellner. Entropy methods for reaction-diffusion systems. Conference Publications, 2007, 2007 (Special) : 304-312. doi: 10.3934/proc.2007.2007.304

[14]

A. Dall'Acqua. Positive solutions for a class of reaction-diffusion systems. Communications on Pure & Applied Analysis, 2003, 2 (1) : 65-76. doi: 10.3934/cpaa.2003.2.65

[15]

Yanxia Wu, Yaping Wu. Existence of traveling waves with transition layers for some degenerate cross-diffusion systems. Communications on Pure & Applied Analysis, 2012, 11 (3) : 911-934. doi: 10.3934/cpaa.2012.11.911

[16]

Zheng Sun, José A. Carrillo, Chi-Wang Shu. An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems. Kinetic & Related Models, 2019, 12 (4) : 885-908. doi: 10.3934/krm.2019033

[17]

Yuan Lou, Salomé Martínez, Wei-Ming Ni. On $3\times 3$ Lotka-Volterra competition systems with cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 175-190. doi: 10.3934/dcds.2000.6.175

[18]

Yaping Wu, Qian Xu. The existence and structure of large spiky steady states for S-K-T competition systems with cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 367-385. doi: 10.3934/dcds.2011.29.367

[19]

Dieter Bothe, Michel Pierre. The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 49-59. doi: 10.3934/dcdss.2012.5.49

[20]

Heather Finotti, Suzanne Lenhart, Tuoc Van Phan. Optimal control of advective direction in reaction-diffusion population models. Evolution Equations & Control Theory, 2012, 1 (1) : 81-107. doi: 10.3934/eect.2012.1.81

2019 Impact Factor: 1.311

Article outline

[Back to Top]