January  2021, 14(1): 77-88. doi: 10.3934/krm.2020049

On two properties of the Fisher information

Université Grenoble-Alpes & CNRS, LPMMC (UMR 5493), B.P. 166, F-38042 Grenoble, France

Received  January 2020 Revised  August 2020 Published  November 2020

Alternative proofs for the superadditivity and the affinity (in the large system limit) of the usual and some fractional Fisher informations of a probability density of many variables are provided. They are consequences of the fact that such informations can be interpreted as quantum kinetic energies.

Citation: Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, 2021, 14 (1) : 77-88. doi: 10.3934/krm.2020049
References:
[1]

J. Bourgain, H. Brézis and P. Mironescu, Another look at Sobolev spaces, in Optimal control and Partial Differential equations, IOS Press, (2001), 439–455.  Google Scholar

[2]

J. BourgainH. Brezis and P. Mironescu, Limiting embedding theorems for $W^{s,p}$ when $s\uparrow 1$ and applications, J. Anal. Math., 87 (2002), 77-101.  doi: 10.1007/BF02868470.  Google Scholar

[3]

E. A. Carlen, Superadditivity of Fisher's information and logarithmic Sobolev inequalities, J. Funct. Anal., 101 (1991), 194-211.  doi: 10.1016/0022-1236(91)90155-X.  Google Scholar

[4]

G. F. dell'Antonio, On the limits of sequences of normal states, Comm. Pure Appl. Math., 20 (1967), 413-429.  doi: 10.1002/cpa.3160200209.  Google Scholar

[5]

N. FournierM. Hauray and S. Mischler, Propagation of chaos for the 2d viscous vortex model, J. Eur. Math. Soc., 16 (2014), 1423-1466.  doi: 10.4171/JEMS/465.  Google Scholar

[6]

F. Golse, On the dynamics of large particle systems in the mean field limit, arXiv: 1301.5494, (2013)., Lecture notes for a course at the NDNS+ Applied Dynamical Systems Summer School "Macroscopic and large scale phenomena", Universiteit Twente, Enschede (The Netherlands). Google Scholar

[7]

M. Hauray, Limite de Champ Moyen et Propagation du Chaos Pour des Systèmes de Particules, Limites Gyro-cinétique et Quasi-neutre Pour Les Plasmas., Habilitation thesis, 2014. Google Scholar

[8]

M. Hauray and S. Mischler, On Kac's chaos and related problems, J. Func. Anal., 266 (2014), 6055-6157.  doi: 10.1016/j.jfa.2014.02.030.  Google Scholar

[9]

E. Hewitt and L. J. Savage, Symmetric measures on Cartesian products, Trans. Amer. Math. Soc., 80 (1955), 470-501.  doi: 10.1090/S0002-9947-1955-0076206-8.  Google Scholar

[10]

M. Hoffmann-Ostenhof and T. Hoffmann-Ostenhof, Schrödinger inequalities and asymptotic behavior of the electron density of atoms and molecules, Phys. Rev. A, 16 (1977), 1782-1785.  doi: 10.1103/PhysRevA.16.1782.  Google Scholar

[11]

R. L. Hudson and G. R. Moody, Locally normal symmetric states and an analogue of de Finetti's theorem, Z. Wahrscheinlichkeitstheor. und Verw. Gebiete, 33 (1975/76), 343-351.  doi: 10.1007/BF00534784.  Google Scholar

[12]

M. K.-H. Kiessling, The Hartree limit of Born's ensemble for the ground state of a bosonic atom or ion, J. Math. Phys., 53 (2012), 095223, 21 pp. doi: 10.1063/1.4752475.  Google Scholar

[13]

M. Lewin, Mean-Field limit of Bose systems: Rigorous results, arXiv: 1510.04407, Proceedings of the International Congress of Mathematical Physics, 2015 Google Scholar

[14]

M. LewinP. T. Nam and N. Rougerie, Derivation of Hartree's theory for generic mean-field Bose systems, Adv. Math., 254 (2014), 570-621.  doi: 10.1016/j.aim.2013.12.010.  Google Scholar

[15]

E. H. Lieb and M. Loss, Analysis, vol. 14 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2nd ed., 2001. doi: 10.1090/gsm/014.  Google Scholar

[16]

W. Masja and J. Nagel, Über äquivalente normierung der anisotropen Funktionalraüme $H ^{\mu} ( { {\mathbb R} } ^n)$, Beiträge zur Analysis, 12 (1978), 7-17.   Google Scholar

[17]

V. Maz'ya and T. Shaposhnikova, On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Func. Anal., 195 (2002), 230-238.  doi: 10.1006/jfan.2002.3955.  Google Scholar

[18]

D. W. Robinson and D. Ruelle, Mean entropy of states in classical statistical mechanics, Commun. Math. Phys., 5 (1967), 288-300.  doi: 10.1007/BF01646480.  Google Scholar

[19]

N. Rougerie, De Finetti theorems, mean-field limits and Bose-Einstein condensation, arXiv: 1506.05263, 2014. LMU lecture notes. Google Scholar

[20]

——, Théorèmes de De Finetti, Limites de Champ Moyen et Condensation de Bose-Einstein, Les cours Peccot, Spartacus IDH, Paris, 2016., Cours Peccot, Collège de France : février-mars 2014. Google Scholar

[21]

S. Salem, Propagation of chaos for fractional Keller Segel equations in diffusion dominated and fair competition cases, Journal de Mathématiques Pures et Appliquées, 132 (2019), 79-132. doi: 10.1016/j.matpur.2019.04.011.  Google Scholar

[22]

S. Salem, Propagation of chaos for the Boltzmann equation with moderately soft potentials, arXiv: 1910.01883, 2019. Google Scholar

[23]

R. Schatten, Norm Ideals of Completely Continuous Operators, vol. 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete, Folge, 1960.  Google Scholar

[24] B. Simon, Trace Ideals and Their Applications, vol. 35 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1979.   Google Scholar
[25]

G. Toscani, The fractional Fisher information and the central limit theorem for stable laws, Ric. Mat., 65 (2016), 71-91.  doi: 10.1007/s11587-015-0253-9.  Google Scholar

[26]

G. Toscani, The information-theoretic meaning of Gagliardo-Nirenberg type inequalities, Rend. Lincei Mat. Appl., 30 (2019), 237-253.  doi: 10.4171/RLM/845.  Google Scholar

[27]

G. Toscani, Score functions, generalized relative Fisher information and applications, Ricerche mat., 66 (2017) 15–26. doi: 10.1007/s11587-016-0281-0.  Google Scholar

show all references

References:
[1]

J. Bourgain, H. Brézis and P. Mironescu, Another look at Sobolev spaces, in Optimal control and Partial Differential equations, IOS Press, (2001), 439–455.  Google Scholar

[2]

J. BourgainH. Brezis and P. Mironescu, Limiting embedding theorems for $W^{s,p}$ when $s\uparrow 1$ and applications, J. Anal. Math., 87 (2002), 77-101.  doi: 10.1007/BF02868470.  Google Scholar

[3]

E. A. Carlen, Superadditivity of Fisher's information and logarithmic Sobolev inequalities, J. Funct. Anal., 101 (1991), 194-211.  doi: 10.1016/0022-1236(91)90155-X.  Google Scholar

[4]

G. F. dell'Antonio, On the limits of sequences of normal states, Comm. Pure Appl. Math., 20 (1967), 413-429.  doi: 10.1002/cpa.3160200209.  Google Scholar

[5]

N. FournierM. Hauray and S. Mischler, Propagation of chaos for the 2d viscous vortex model, J. Eur. Math. Soc., 16 (2014), 1423-1466.  doi: 10.4171/JEMS/465.  Google Scholar

[6]

F. Golse, On the dynamics of large particle systems in the mean field limit, arXiv: 1301.5494, (2013)., Lecture notes for a course at the NDNS+ Applied Dynamical Systems Summer School "Macroscopic and large scale phenomena", Universiteit Twente, Enschede (The Netherlands). Google Scholar

[7]

M. Hauray, Limite de Champ Moyen et Propagation du Chaos Pour des Systèmes de Particules, Limites Gyro-cinétique et Quasi-neutre Pour Les Plasmas., Habilitation thesis, 2014. Google Scholar

[8]

M. Hauray and S. Mischler, On Kac's chaos and related problems, J. Func. Anal., 266 (2014), 6055-6157.  doi: 10.1016/j.jfa.2014.02.030.  Google Scholar

[9]

E. Hewitt and L. J. Savage, Symmetric measures on Cartesian products, Trans. Amer. Math. Soc., 80 (1955), 470-501.  doi: 10.1090/S0002-9947-1955-0076206-8.  Google Scholar

[10]

M. Hoffmann-Ostenhof and T. Hoffmann-Ostenhof, Schrödinger inequalities and asymptotic behavior of the electron density of atoms and molecules, Phys. Rev. A, 16 (1977), 1782-1785.  doi: 10.1103/PhysRevA.16.1782.  Google Scholar

[11]

R. L. Hudson and G. R. Moody, Locally normal symmetric states and an analogue of de Finetti's theorem, Z. Wahrscheinlichkeitstheor. und Verw. Gebiete, 33 (1975/76), 343-351.  doi: 10.1007/BF00534784.  Google Scholar

[12]

M. K.-H. Kiessling, The Hartree limit of Born's ensemble for the ground state of a bosonic atom or ion, J. Math. Phys., 53 (2012), 095223, 21 pp. doi: 10.1063/1.4752475.  Google Scholar

[13]

M. Lewin, Mean-Field limit of Bose systems: Rigorous results, arXiv: 1510.04407, Proceedings of the International Congress of Mathematical Physics, 2015 Google Scholar

[14]

M. LewinP. T. Nam and N. Rougerie, Derivation of Hartree's theory for generic mean-field Bose systems, Adv. Math., 254 (2014), 570-621.  doi: 10.1016/j.aim.2013.12.010.  Google Scholar

[15]

E. H. Lieb and M. Loss, Analysis, vol. 14 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2nd ed., 2001. doi: 10.1090/gsm/014.  Google Scholar

[16]

W. Masja and J. Nagel, Über äquivalente normierung der anisotropen Funktionalraüme $H ^{\mu} ( { {\mathbb R} } ^n)$, Beiträge zur Analysis, 12 (1978), 7-17.   Google Scholar

[17]

V. Maz'ya and T. Shaposhnikova, On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Func. Anal., 195 (2002), 230-238.  doi: 10.1006/jfan.2002.3955.  Google Scholar

[18]

D. W. Robinson and D. Ruelle, Mean entropy of states in classical statistical mechanics, Commun. Math. Phys., 5 (1967), 288-300.  doi: 10.1007/BF01646480.  Google Scholar

[19]

N. Rougerie, De Finetti theorems, mean-field limits and Bose-Einstein condensation, arXiv: 1506.05263, 2014. LMU lecture notes. Google Scholar

[20]

——, Théorèmes de De Finetti, Limites de Champ Moyen et Condensation de Bose-Einstein, Les cours Peccot, Spartacus IDH, Paris, 2016., Cours Peccot, Collège de France : février-mars 2014. Google Scholar

[21]

S. Salem, Propagation of chaos for fractional Keller Segel equations in diffusion dominated and fair competition cases, Journal de Mathématiques Pures et Appliquées, 132 (2019), 79-132. doi: 10.1016/j.matpur.2019.04.011.  Google Scholar

[22]

S. Salem, Propagation of chaos for the Boltzmann equation with moderately soft potentials, arXiv: 1910.01883, 2019. Google Scholar

[23]

R. Schatten, Norm Ideals of Completely Continuous Operators, vol. 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete, Folge, 1960.  Google Scholar

[24] B. Simon, Trace Ideals and Their Applications, vol. 35 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1979.   Google Scholar
[25]

G. Toscani, The fractional Fisher information and the central limit theorem for stable laws, Ric. Mat., 65 (2016), 71-91.  doi: 10.1007/s11587-015-0253-9.  Google Scholar

[26]

G. Toscani, The information-theoretic meaning of Gagliardo-Nirenberg type inequalities, Rend. Lincei Mat. Appl., 30 (2019), 237-253.  doi: 10.4171/RLM/845.  Google Scholar

[27]

G. Toscani, Score functions, generalized relative Fisher information and applications, Ricerche mat., 66 (2017) 15–26. doi: 10.1007/s11587-016-0281-0.  Google Scholar

[1]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

[2]

Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021006

[3]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[4]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[5]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[6]

Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024

[7]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[8]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[9]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[10]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[11]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[12]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[13]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[14]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[15]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021004

[16]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[17]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[18]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (40)
  • HTML views (94)
  • Cited by (0)

Other articles
by authors

[Back to Top]