February  2021, 14(1): 77-88. doi: 10.3934/krm.2020049

On two properties of the Fisher information

Université Grenoble-Alpes & CNRS, LPMMC (UMR 5493), B.P. 166, F-38042 Grenoble, France

Received  January 2020 Revised  August 2020 Published  February 2021 Early access  November 2020

Alternative proofs for the superadditivity and the affinity (in the large system limit) of the usual and some fractional Fisher informations of a probability density of many variables are provided. They are consequences of the fact that such informations can be interpreted as quantum kinetic energies.

 

Erratum: The month information has been corrected from January to February. We apologize for any inconvenience this may cause.

Citation: Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, 2021, 14 (1) : 77-88. doi: 10.3934/krm.2020049
References:
[1]

J. Bourgain, H. Brézis and P. Mironescu, Another look at Sobolev spaces, in Optimal control and Partial Differential equations, IOS Press, (2001), 439–455.  Google Scholar

[2]

J. BourgainH. Brezis and P. Mironescu, Limiting embedding theorems for $W^{s,p}$ when $s\uparrow 1$ and applications, J. Anal. Math., 87 (2002), 77-101.  doi: 10.1007/BF02868470.  Google Scholar

[3]

E. A. Carlen, Superadditivity of Fisher's information and logarithmic Sobolev inequalities, J. Funct. Anal., 101 (1991), 194-211.  doi: 10.1016/0022-1236(91)90155-X.  Google Scholar

[4]

G. F. dell'Antonio, On the limits of sequences of normal states, Comm. Pure Appl. Math., 20 (1967), 413-429.  doi: 10.1002/cpa.3160200209.  Google Scholar

[5]

N. FournierM. Hauray and S. Mischler, Propagation of chaos for the 2d viscous vortex model, J. Eur. Math. Soc., 16 (2014), 1423-1466.  doi: 10.4171/JEMS/465.  Google Scholar

[6]

F. Golse, On the dynamics of large particle systems in the mean field limit, arXiv: 1301.5494, (2013)., Lecture notes for a course at the NDNS+ Applied Dynamical Systems Summer School "Macroscopic and large scale phenomena", Universiteit Twente, Enschede (The Netherlands). Google Scholar

[7]

M. Hauray, Limite de Champ Moyen et Propagation du Chaos Pour des Systèmes de Particules, Limites Gyro-cinétique et Quasi-neutre Pour Les Plasmas., Habilitation thesis, 2014. Google Scholar

[8]

M. Hauray and S. Mischler, On Kac's chaos and related problems, J. Func. Anal., 266 (2014), 6055-6157.  doi: 10.1016/j.jfa.2014.02.030.  Google Scholar

[9]

E. Hewitt and L. J. Savage, Symmetric measures on Cartesian products, Trans. Amer. Math. Soc., 80 (1955), 470-501.  doi: 10.1090/S0002-9947-1955-0076206-8.  Google Scholar

[10]

M. Hoffmann-Ostenhof and T. Hoffmann-Ostenhof, Schrödinger inequalities and asymptotic behavior of the electron density of atoms and molecules, Phys. Rev. A, 16 (1977), 1782-1785.  doi: 10.1103/PhysRevA.16.1782.  Google Scholar

[11]

R. L. Hudson and G. R. Moody, Locally normal symmetric states and an analogue of de Finetti's theorem, Z. Wahrscheinlichkeitstheor. und Verw. Gebiete, 33 (1975/76), 343-351.  doi: 10.1007/BF00534784.  Google Scholar

[12]

M. K.-H. Kiessling, The Hartree limit of Born's ensemble for the ground state of a bosonic atom or ion, J. Math. Phys., 53 (2012), 095223, 21 pp. doi: 10.1063/1.4752475.  Google Scholar

[13]

M. Lewin, Mean-Field limit of Bose systems: Rigorous results, arXiv: 1510.04407, Proceedings of the International Congress of Mathematical Physics, 2015 Google Scholar

[14]

M. LewinP. T. Nam and N. Rougerie, Derivation of Hartree's theory for generic mean-field Bose systems, Adv. Math., 254 (2014), 570-621.  doi: 10.1016/j.aim.2013.12.010.  Google Scholar

[15]

E. H. Lieb and M. Loss, Analysis, vol. 14 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2nd ed., 2001. doi: 10.1090/gsm/014.  Google Scholar

[16]

W. Masja and J. Nagel, Über äquivalente normierung der anisotropen Funktionalraüme $H ^{\mu} ( { {\mathbb R} } ^n)$, Beiträge zur Analysis, 12 (1978), 7-17.   Google Scholar

[17]

V. Maz'ya and T. Shaposhnikova, On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Func. Anal., 195 (2002), 230-238.  doi: 10.1006/jfan.2002.3955.  Google Scholar

[18]

D. W. Robinson and D. Ruelle, Mean entropy of states in classical statistical mechanics, Commun. Math. Phys., 5 (1967), 288-300.  doi: 10.1007/BF01646480.  Google Scholar

[19]

N. Rougerie, De Finetti theorems, mean-field limits and Bose-Einstein condensation, arXiv: 1506.05263, 2014. LMU lecture notes. Google Scholar

[20]

——, Théorèmes de De Finetti, Limites de Champ Moyen et Condensation de Bose-Einstein, Les cours Peccot, Spartacus IDH, Paris, 2016., Cours Peccot, Collège de France : février-mars 2014. Google Scholar

[21]

S. Salem, Propagation of chaos for fractional Keller Segel equations in diffusion dominated and fair competition cases, Journal de Mathématiques Pures et Appliquées, 132 (2019), 79-132. doi: 10.1016/j.matpur.2019.04.011.  Google Scholar

[22]

S. Salem, Propagation of chaos for the Boltzmann equation with moderately soft potentials, arXiv: 1910.01883, 2019. Google Scholar

[23]

R. Schatten, Norm Ideals of Completely Continuous Operators, vol. 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete, Folge, 1960.  Google Scholar

[24] B. Simon, Trace Ideals and Their Applications, vol. 35 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1979.   Google Scholar
[25]

G. Toscani, The fractional Fisher information and the central limit theorem for stable laws, Ric. Mat., 65 (2016), 71-91.  doi: 10.1007/s11587-015-0253-9.  Google Scholar

[26]

G. Toscani, The information-theoretic meaning of Gagliardo-Nirenberg type inequalities, Rend. Lincei Mat. Appl., 30 (2019), 237-253.  doi: 10.4171/RLM/845.  Google Scholar

[27]

G. Toscani, Score functions, generalized relative Fisher information and applications, Ricerche mat., 66 (2017) 15–26. doi: 10.1007/s11587-016-0281-0.  Google Scholar

show all references

References:
[1]

J. Bourgain, H. Brézis and P. Mironescu, Another look at Sobolev spaces, in Optimal control and Partial Differential equations, IOS Press, (2001), 439–455.  Google Scholar

[2]

J. BourgainH. Brezis and P. Mironescu, Limiting embedding theorems for $W^{s,p}$ when $s\uparrow 1$ and applications, J. Anal. Math., 87 (2002), 77-101.  doi: 10.1007/BF02868470.  Google Scholar

[3]

E. A. Carlen, Superadditivity of Fisher's information and logarithmic Sobolev inequalities, J. Funct. Anal., 101 (1991), 194-211.  doi: 10.1016/0022-1236(91)90155-X.  Google Scholar

[4]

G. F. dell'Antonio, On the limits of sequences of normal states, Comm. Pure Appl. Math., 20 (1967), 413-429.  doi: 10.1002/cpa.3160200209.  Google Scholar

[5]

N. FournierM. Hauray and S. Mischler, Propagation of chaos for the 2d viscous vortex model, J. Eur. Math. Soc., 16 (2014), 1423-1466.  doi: 10.4171/JEMS/465.  Google Scholar

[6]

F. Golse, On the dynamics of large particle systems in the mean field limit, arXiv: 1301.5494, (2013)., Lecture notes for a course at the NDNS+ Applied Dynamical Systems Summer School "Macroscopic and large scale phenomena", Universiteit Twente, Enschede (The Netherlands). Google Scholar

[7]

M. Hauray, Limite de Champ Moyen et Propagation du Chaos Pour des Systèmes de Particules, Limites Gyro-cinétique et Quasi-neutre Pour Les Plasmas., Habilitation thesis, 2014. Google Scholar

[8]

M. Hauray and S. Mischler, On Kac's chaos and related problems, J. Func. Anal., 266 (2014), 6055-6157.  doi: 10.1016/j.jfa.2014.02.030.  Google Scholar

[9]

E. Hewitt and L. J. Savage, Symmetric measures on Cartesian products, Trans. Amer. Math. Soc., 80 (1955), 470-501.  doi: 10.1090/S0002-9947-1955-0076206-8.  Google Scholar

[10]

M. Hoffmann-Ostenhof and T. Hoffmann-Ostenhof, Schrödinger inequalities and asymptotic behavior of the electron density of atoms and molecules, Phys. Rev. A, 16 (1977), 1782-1785.  doi: 10.1103/PhysRevA.16.1782.  Google Scholar

[11]

R. L. Hudson and G. R. Moody, Locally normal symmetric states and an analogue of de Finetti's theorem, Z. Wahrscheinlichkeitstheor. und Verw. Gebiete, 33 (1975/76), 343-351.  doi: 10.1007/BF00534784.  Google Scholar

[12]

M. K.-H. Kiessling, The Hartree limit of Born's ensemble for the ground state of a bosonic atom or ion, J. Math. Phys., 53 (2012), 095223, 21 pp. doi: 10.1063/1.4752475.  Google Scholar

[13]

M. Lewin, Mean-Field limit of Bose systems: Rigorous results, arXiv: 1510.04407, Proceedings of the International Congress of Mathematical Physics, 2015 Google Scholar

[14]

M. LewinP. T. Nam and N. Rougerie, Derivation of Hartree's theory for generic mean-field Bose systems, Adv. Math., 254 (2014), 570-621.  doi: 10.1016/j.aim.2013.12.010.  Google Scholar

[15]

E. H. Lieb and M. Loss, Analysis, vol. 14 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2nd ed., 2001. doi: 10.1090/gsm/014.  Google Scholar

[16]

W. Masja and J. Nagel, Über äquivalente normierung der anisotropen Funktionalraüme $H ^{\mu} ( { {\mathbb R} } ^n)$, Beiträge zur Analysis, 12 (1978), 7-17.   Google Scholar

[17]

V. Maz'ya and T. Shaposhnikova, On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Func. Anal., 195 (2002), 230-238.  doi: 10.1006/jfan.2002.3955.  Google Scholar

[18]

D. W. Robinson and D. Ruelle, Mean entropy of states in classical statistical mechanics, Commun. Math. Phys., 5 (1967), 288-300.  doi: 10.1007/BF01646480.  Google Scholar

[19]

N. Rougerie, De Finetti theorems, mean-field limits and Bose-Einstein condensation, arXiv: 1506.05263, 2014. LMU lecture notes. Google Scholar

[20]

——, Théorèmes de De Finetti, Limites de Champ Moyen et Condensation de Bose-Einstein, Les cours Peccot, Spartacus IDH, Paris, 2016., Cours Peccot, Collège de France : février-mars 2014. Google Scholar

[21]

S. Salem, Propagation of chaos for fractional Keller Segel equations in diffusion dominated and fair competition cases, Journal de Mathématiques Pures et Appliquées, 132 (2019), 79-132. doi: 10.1016/j.matpur.2019.04.011.  Google Scholar

[22]

S. Salem, Propagation of chaos for the Boltzmann equation with moderately soft potentials, arXiv: 1910.01883, 2019. Google Scholar

[23]

R. Schatten, Norm Ideals of Completely Continuous Operators, vol. 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete, Folge, 1960.  Google Scholar

[24] B. Simon, Trace Ideals and Their Applications, vol. 35 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1979.   Google Scholar
[25]

G. Toscani, The fractional Fisher information and the central limit theorem for stable laws, Ric. Mat., 65 (2016), 71-91.  doi: 10.1007/s11587-015-0253-9.  Google Scholar

[26]

G. Toscani, The information-theoretic meaning of Gagliardo-Nirenberg type inequalities, Rend. Lincei Mat. Appl., 30 (2019), 237-253.  doi: 10.4171/RLM/845.  Google Scholar

[27]

G. Toscani, Score functions, generalized relative Fisher information and applications, Ricerche mat., 66 (2017) 15–26. doi: 10.1007/s11587-016-0281-0.  Google Scholar

[1]

Patrick Gerard, Christophe Pallard. A mean-field toy model for resonant transport. Kinetic & Related Models, 2010, 3 (2) : 299-309. doi: 10.3934/krm.2010.3.299

[2]

Thierry Paul, Mario Pulvirenti. Asymptotic expansion of the mean-field approximation. Discrete & Continuous Dynamical Systems, 2019, 39 (4) : 1891-1921. doi: 10.3934/dcds.2019080

[3]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, 2021, 14 (3) : 429-468. doi: 10.3934/krm.2021011

[4]

Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021, 8 (4) : 445-465. doi: 10.3934/jdg.2021006

[5]

Pierre-Emmanuel Jabin. A review of the mean field limits for Vlasov equations. Kinetic & Related Models, 2014, 7 (4) : 661-711. doi: 10.3934/krm.2014.7.661

[6]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111

[7]

Diogo A. Gomes, Gabriel E. Pires, Héctor Sánchez-Morgado. A-priori estimates for stationary mean-field games. Networks & Heterogeneous Media, 2012, 7 (2) : 303-314. doi: 10.3934/nhm.2012.7.303

[8]

Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Mean-field backward stochastic Volterra integral equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1929-1967. doi: 10.3934/dcdsb.2013.18.1929

[9]

Gerasimenko Viktor. Heisenberg picture of quantum kinetic evolution in mean-field limit. Kinetic & Related Models, 2011, 4 (1) : 385-399. doi: 10.3934/krm.2011.4.385

[10]

Franco Flandoli, Enrico Priola, Giovanni Zanco. A mean-field model with discontinuous coefficients for neurons with spatial interaction. Discrete & Continuous Dynamical Systems, 2019, 39 (6) : 3037-3067. doi: 10.3934/dcds.2019126

[11]

Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. Uniform stability and mean-field limit for the augmented Kuramoto model. Networks & Heterogeneous Media, 2018, 13 (2) : 297-322. doi: 10.3934/nhm.2018013

[12]

Michael Herty, Mattia Zanella. Performance bounds for the mean-field limit of constrained dynamics. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 2023-2043. doi: 10.3934/dcds.2017086

[13]

Zhenghong Qiu, Jianhui Huang, Tinghan Xie. Linear-Quadratic-Gaussian mean-field controls of social optima. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021047

[14]

René Aïd, Roxana Dumitrescu, Peter Tankov. The entry and exit game in the electricity markets: A mean-field game approach. Journal of Dynamics & Games, 2021, 8 (4) : 331-358. doi: 10.3934/jdg.2021012

[15]

Charles Bordenave, David R. McDonald, Alexandre Proutière. A particle system in interaction with a rapidly varying environment: Mean field limits and applications. Networks & Heterogeneous Media, 2010, 5 (1) : 31-62. doi: 10.3934/nhm.2010.5.31

[16]

Ikuo Arizono, Yasuhiko Takemoto. Statistical mechanics approach for steady-state analysis in M/M/s queueing system with balking. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020141

[17]

R. M. Yulmetyev, E. V. Khusaenova, D. G. Yulmetyeva, P. Hänggi, S. Shimojo, K. Watanabe, J. Bhattacharya. Dynamic effects and information quantifiers of statistical memory of MEG's signals at photosensitive epilepsy. Mathematical Biosciences & Engineering, 2009, 6 (1) : 189-206. doi: 10.3934/mbe.2009.6.189

[18]

Stamatios Katsikas, Vassilli Kolokoltsov. Evolutionary, mean-field and pressure-resistance game modelling of networks security. Journal of Dynamics & Games, 2019, 6 (4) : 315-335. doi: 10.3934/jdg.2019021

[19]

Max-Olivier Hongler. Mean-field games and swarms dynamics in Gaussian and non-Gaussian environments. Journal of Dynamics & Games, 2020, 7 (1) : 1-20. doi: 10.3934/jdg.2020001

[20]

Seung-Yeal Ha, Jeongho Kim, Peter Pickl, Xiongtao Zhang. A probabilistic approach for the mean-field limit to the Cucker-Smale model with a singular communication. Kinetic & Related Models, 2019, 12 (5) : 1045-1067. doi: 10.3934/krm.2019039

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (103)
  • HTML views (120)
  • Cited by (0)

Other articles
by authors

[Back to Top]