February  2021, 14(1): 89-113. doi: 10.3934/krm.2020050

Superposition principle and schemes for measure differential equations

1. 

"Sapienza" Università di Roma, Dipartimento di Scienze di Base e Applicate per l'Ingegneria, via Scarpa 16, I-00161 Rome, Italy

2. 

Politecnico di Milano, Dipartimento di Matematica "F. Brioschi", Piazza Leonardo da Vinci 32, I-20133 Milano, Italy

3. 

Rutgers University - Camden, Department of Mathematical Sciences, 311 N. 5th Street, Camden, NJ 08102, USA

* Corresponding author: Giulia Cavagnari

Received  February 2020 Revised  September 2020 Published  February 2021 Early access  November 2020

Measure Differential Equations (MDE) describe the evolution of probability measures driven by probability velocity fields, i.e. probability measures on the tangent bundle. They are, on one side, a measure-theoretic generalization of ordinary differential equations; on the other side, they allow to describe concentration and diffusion phenomena typical of kinetic equations. In this paper, we analyze some properties of this class of differential equations, especially highlighting their link with nonlocal continuity equations. We prove a representation result in the spirit of the Superposition Principle by Ambrosio-Gigli-Savaré, and we provide alternative schemes converging to a solution of the MDE, with a particular view to uniqueness/non-uniqueness phenomena.

 

Erratum: The month information has been corrected from January to February. We apologize for any inconvenience this may cause.

Citation: Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050
References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2$^nd$ edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. doi: 10.1007/b137080.  Google Scholar

[2]

M. Bongini and G. Buttazzo, Optimal control problems in transport dynamics, Mathematical Models and Methods in Applied Sciences, 27, (2017), 427–451. doi: 10.1142/S0218202517500063.  Google Scholar

[3]

F. CamilliR. De Maio and A. Tosin, Measure-valued solutions to nonlocal transport equations on networks, J. Differential Equations, 264 (2018), 7213-7241.  doi: 10.1016/j.jde.2018.02.015.  Google Scholar

[4]

F. CamilliR. De Maio and A. Tosin, Transport of measures on networks, Networks & Heterogeneous Media, 12 (2017), 191-215.  doi: 10.3934/nhm.2017008.  Google Scholar

[5]

J. A. CañizoJ. A. Carrillo and J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion, Math. Models Methods Appl. Sci., 21 (2011), 515-539.  doi: 10.1142/S0218202511005131.  Google Scholar

[6]

G. Cavagnari, A. Marigonda and B. Piccoli, Generalized dynamic programming principle and sparse mean-field control problems, Journal of Mathematical Analysis and Applications, 481, (2020), 123437, 45 pp. doi: 10.1016/j.jmaa.2019.123437.  Google Scholar

[7]

G. Cavagnari, A. Marigonda and B. Piccoli, Superposition principle for differential inclusions, in Large-Scale Scientific Computing. LSSC 2017. Lecture Notes in Computer Science (eds. I. Lirkov and S. Margenov), 10665, Springer, Cham, 2018, 201–209. doi: 10.1007/978-3-319-73441-5_21.  Google Scholar

[8]

E. Cristiani, B. Piccoli and A. Tosin, Multiscale Modeling of Pedestrian Dynamics, MS & A: Modeling, Simulation and Applications, Springer, Cham, Vol. 12, 2014. doi: 10.1007/978-3-319-06620-2.  Google Scholar

[9]

J. Diestel and J. J. Uhl, Vector Measures, Amer. Math. Soc., Providence, 1977. doi: 10.1090/surv/015.  Google Scholar

[10]

F. Golse, The mean-field limit for the dynamics of large particle systems, Journées Équations aux Dérivées Partielles, Univ. Nantes, Nantes, 2003, 47 pp. doi: 10.5802/jedp.623.  Google Scholar

[11]

P.-E. Jabin, A review of the mean field limits for Vlasov equations, Kinetic & Related Models, 7 (2014), 661-711.  doi: 10.3934/krm.2014.7.661.  Google Scholar

[12]

C. Orrieri, Large deviations for interacting particle systems: joint mean-field and small-noise limit, Electron. J. Probab., 25 (2020) Paper No. 111, 44 pp. doi: 10.1214/20-EJP516.  Google Scholar

[13]

B. Piccoli, Measure differential equations, Arch Rational Mech Anal, 233 (2019), 1289-1317.  doi: 10.1007/s00205-019-01379-4.  Google Scholar

[14]

B. Piccoli and F. Rossi, Measure dynamics with probability vector fields and sources, Discrete & Continuous Dynamical Systems - A, 39 (2019), 6207-6230.  doi: 10.3934/dcds.2019270.  Google Scholar

[15]

B. Piccoli and F. Rossi, Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes, Acta Applicandae Mathematicae, 124 (2013), 73-105.  doi: 10.1007/s10440-012-9771-6.  Google Scholar

[16]

F. Poupaud and M. Rascle, Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients, Communications in Partial Differential Equations, 22, (1997), 225–267. doi: 10.1080/03605309708821265.  Google Scholar

[17]

F. Santambrogio, Optimal Transport for Applied Mathematicians, Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser Basel, vol. 87, ed. 1 2015. doi: 10.1007/978-3-319-20828-2.  Google Scholar

[18]

T. Vicsek and A. Zafeiris, Collective motion, Physics Reports, 517 (2012), 71-140.  doi: 10.1016/j.physrep.2012.03.004.  Google Scholar

[19]

C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics, Vol. 58, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/gsm/058.  Google Scholar

show all references

References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2$^nd$ edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. doi: 10.1007/b137080.  Google Scholar

[2]

M. Bongini and G. Buttazzo, Optimal control problems in transport dynamics, Mathematical Models and Methods in Applied Sciences, 27, (2017), 427–451. doi: 10.1142/S0218202517500063.  Google Scholar

[3]

F. CamilliR. De Maio and A. Tosin, Measure-valued solutions to nonlocal transport equations on networks, J. Differential Equations, 264 (2018), 7213-7241.  doi: 10.1016/j.jde.2018.02.015.  Google Scholar

[4]

F. CamilliR. De Maio and A. Tosin, Transport of measures on networks, Networks & Heterogeneous Media, 12 (2017), 191-215.  doi: 10.3934/nhm.2017008.  Google Scholar

[5]

J. A. CañizoJ. A. Carrillo and J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion, Math. Models Methods Appl. Sci., 21 (2011), 515-539.  doi: 10.1142/S0218202511005131.  Google Scholar

[6]

G. Cavagnari, A. Marigonda and B. Piccoli, Generalized dynamic programming principle and sparse mean-field control problems, Journal of Mathematical Analysis and Applications, 481, (2020), 123437, 45 pp. doi: 10.1016/j.jmaa.2019.123437.  Google Scholar

[7]

G. Cavagnari, A. Marigonda and B. Piccoli, Superposition principle for differential inclusions, in Large-Scale Scientific Computing. LSSC 2017. Lecture Notes in Computer Science (eds. I. Lirkov and S. Margenov), 10665, Springer, Cham, 2018, 201–209. doi: 10.1007/978-3-319-73441-5_21.  Google Scholar

[8]

E. Cristiani, B. Piccoli and A. Tosin, Multiscale Modeling of Pedestrian Dynamics, MS & A: Modeling, Simulation and Applications, Springer, Cham, Vol. 12, 2014. doi: 10.1007/978-3-319-06620-2.  Google Scholar

[9]

J. Diestel and J. J. Uhl, Vector Measures, Amer. Math. Soc., Providence, 1977. doi: 10.1090/surv/015.  Google Scholar

[10]

F. Golse, The mean-field limit for the dynamics of large particle systems, Journées Équations aux Dérivées Partielles, Univ. Nantes, Nantes, 2003, 47 pp. doi: 10.5802/jedp.623.  Google Scholar

[11]

P.-E. Jabin, A review of the mean field limits for Vlasov equations, Kinetic & Related Models, 7 (2014), 661-711.  doi: 10.3934/krm.2014.7.661.  Google Scholar

[12]

C. Orrieri, Large deviations for interacting particle systems: joint mean-field and small-noise limit, Electron. J. Probab., 25 (2020) Paper No. 111, 44 pp. doi: 10.1214/20-EJP516.  Google Scholar

[13]

B. Piccoli, Measure differential equations, Arch Rational Mech Anal, 233 (2019), 1289-1317.  doi: 10.1007/s00205-019-01379-4.  Google Scholar

[14]

B. Piccoli and F. Rossi, Measure dynamics with probability vector fields and sources, Discrete & Continuous Dynamical Systems - A, 39 (2019), 6207-6230.  doi: 10.3934/dcds.2019270.  Google Scholar

[15]

B. Piccoli and F. Rossi, Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes, Acta Applicandae Mathematicae, 124 (2013), 73-105.  doi: 10.1007/s10440-012-9771-6.  Google Scholar

[16]

F. Poupaud and M. Rascle, Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients, Communications in Partial Differential Equations, 22, (1997), 225–267. doi: 10.1080/03605309708821265.  Google Scholar

[17]

F. Santambrogio, Optimal Transport for Applied Mathematicians, Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser Basel, vol. 87, ed. 1 2015. doi: 10.1007/978-3-319-20828-2.  Google Scholar

[18]

T. Vicsek and A. Zafeiris, Collective motion, Physics Reports, 517 (2012), 71-140.  doi: 10.1016/j.physrep.2012.03.004.  Google Scholar

[19]

C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics, Vol. 58, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/gsm/058.  Google Scholar

Figure 1.  LAS and semi-discrete Lagrangian schemes on the left for $ N = 1 $. Mean-velocity scheme on the right
Figure 2.  LAS and semi-discrete Lagrangian schemes on the left. Mean-velocity scheme on the right
Figure 3.  LAS scheme: for N = 1 (left) and N=2 (right)
Figure 4.  Semi-discrete Lagrangian scheme on the left. Mean-velocity scheme on the right
Figure 5.  Peano's brush referred to Example 4
Figure 6.  LAS scheme for N = 1, 2, 3
[1]

Benedetto Piccoli, Francesco Rossi. Measure dynamics with Probability Vector Fields and sources. Discrete & Continuous Dynamical Systems, 2019, 39 (11) : 6207-6230. doi: 10.3934/dcds.2019270

[2]

Cleopatra Christoforou, Myrto Galanopoulou, Athanasios E. Tzavaras. Measure-valued solutions for the equations of polyconvex adiabatic thermoelasticity. Discrete & Continuous Dynamical Systems, 2019, 39 (11) : 6175-6206. doi: 10.3934/dcds.2019269

[3]

Ammari Zied, Liard Quentin. On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 723-748. doi: 10.3934/dcds.2018032

[4]

Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041

[5]

Azmy S. Ackleh, Vinodh K. Chellamuthu, Kazufumi Ito. Finite difference approximations for measure-valued solutions of a hierarchically size-structured population model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 233-258. doi: 10.3934/mbe.2015.12.233

[6]

Giulia Cavagnari, Antonio Marigonda. Measure-theoretic Lie brackets for nonsmooth vector fields. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 845-864. doi: 10.3934/dcdss.2018052

[7]

Philip Trautmann, Boris Vexler, Alexander Zlotnik. Finite element error analysis for measure-valued optimal control problems governed by a 1D wave equation with variable coefficients. Mathematical Control & Related Fields, 2018, 8 (2) : 411-449. doi: 10.3934/mcrf.2018017

[8]

Leonardi Filippo. A projection method for the computation of admissible measure valued solutions of the incompressible Euler equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 941-961. doi: 10.3934/dcdss.2018056

[9]

Simona Fornaro, Stefano Lisini, Giuseppe Savaré, Giuseppe Toscani. Measure valued solutions of sub-linear diffusion equations with a drift term. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1675-1707. doi: 10.3934/dcds.2012.32.1675

[10]

Zhiyuan Wen, Meirong Zhang. On the optimization problems of the principal eigenvalues of measure differential equations with indefinite measures. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3257-3274. doi: 10.3934/dcdsb.2020061

[11]

Xiangfeng Yang. Stability in measure for uncertain heat equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6533-6540. doi: 10.3934/dcdsb.2019152

[12]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

[13]

Fabio Camilli, Raul De Maio. Memory effects in measure transport equations. Kinetic & Related Models, 2019, 12 (6) : 1229-1245. doi: 10.3934/krm.2019047

[14]

Simon Lloyd, Edson Vargas. Critical covering maps without absolutely continuous invariant probability measure. Discrete & Continuous Dynamical Systems, 2019, 39 (5) : 2393-2412. doi: 10.3934/dcds.2019101

[15]

Andrea Tosin, Paolo Frasca. Existence and approximation of probability measure solutions to models of collective behaviors. Networks & Heterogeneous Media, 2011, 6 (3) : 561-596. doi: 10.3934/nhm.2011.6.561

[16]

Mieczysław Cichoń, Bianca Satco. On the properties of solutions set for measure driven differential inclusions. Conference Publications, 2015, 2015 (special) : 287-296. doi: 10.3934/proc.2015.0287

[17]

John Cleveland. Basic stage structure measure valued evolutionary game model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 291-310. doi: 10.3934/mbe.2015.12.291

[18]

Marco Degiovanni, Michele Scaglia. A variational approach to semilinear elliptic equations with measure data. Discrete & Continuous Dynamical Systems, 2011, 31 (4) : 1233-1248. doi: 10.3934/dcds.2011.31.1233

[19]

Elena Goncharova, Maxim Staritsyn. On BV-extension of asymptotically constrained control-affine systems and complementarity problem for measure differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1061-1070. doi: 10.3934/dcdss.2018061

[20]

Welington Cordeiro, Manfred Denker, Xuan Zhang. On specification and measure expansiveness. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 1941-1957. doi: 10.3934/dcds.2017082

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (140)
  • HTML views (123)
  • Cited by (0)

[Back to Top]