
-
Previous Article
Navier-Stokes limit of globally hyperbolic moment equations
- KRM Home
- This Issue
-
Next Article
Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations
Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem
Université de Nantes, CNRS UMR 6629, Laboratoire de Mathématiques Jean Leray, 2, rue de la Houssinière, 44332 Nantes |
The mathematical description of the interaction between a collisional plasma and an absorbing wall is a challenging issue. In this paper, we propose to model this interaction by considering a stationary bi-species Vlasov-Poisson-Boltzmann boundary value problem with boundary conditions that are consistent with the physics. In particular, we show that the wall potential can be uniquely determined from the ambipolarity of the particles flows as the unique solution of a nonlinear equation. We also prove that it is an increasing function of the electrons re-emission coefficient at the wall. Based on the Schauder fixed point theorem, our analysis establishes the existence of a solution provided, on the one hand that the incoming ions density satisfies a moment condition that generalizes the Historical Bohm criterion, and on the other hand that the collision frequency does not exceed a critical value whose definition is subordinated to the strict validity of our generalized Bohm criterion.
References:
[1] |
S. Andras, Weakly singular Volterra and Fredholm-Volterra integral equations, Studia. Univ. "Babes-Bolyai", Mathematica, 48 2003, 147-155. |
[2] |
A. A. Arsenev, Existence in the large of a weak solution of Vlasov's system of equations, Mat. Mat. Fiz, 15 (1975), 136–147. |
[3] |
M.Badsi, M. Campos Pinto and B. Després, A Minimization formulation of a bi-kinetic sheath, Kinetic and related models, 9 (2016), 621-656.
doi: 10.3934/krm.2016010. |
[4] |
M. Badsi, Linear electron stability for a bi-kinetic sheath model, Journal of Mathematical Analysis and Applications, 453 (2017), 954-972.
doi: 10.1016/j.jmaa.2017.04.055. |
[5] |
C. Bardos and P. Degond, Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data, Annales de l'institut Henri Poincaré, 2 (1985), 101-118.
doi: 10.1016/S0294-1449(16)30405-X. |
[6] |
N. Ben Abdallah, Weak solutions of the initial-boundary value problem for the Vlasov-Poisson system, M2AS, 17 (1994), 451-476
doi: 10.1002/mma.1670170604. |
[7] |
N. Ben Abdallah and J. Dolbeault, Relative entropies for kinetic equations in bounded domains, Arch. Rat. Mech. Anal, 168 (2003), 253-298.
doi: 10.1007/s00205-002-0239-0. |
[8] |
D. Bohm, The characteristics of electrical discharges in magnetic fields, New York: Mc Graw Hill, Chap 3, 1949. Google Scholar |
[9] |
M. Bostan, Existence and uniquness of the mild solution for the 1d Vlasov-Poisson initial-boundary value problem, SIAM J. Math.Anal., 37 (2005), 156-188.
doi: 10.1137/S0036141003434649. |
[10] |
M. Bostan, I. M. Gamba, T. Goudon and A. Vasseur, Boundary Value problems for the stationary Vlasov-Boltzmann-Poisson equation, Indiana Univ. Math., 59 (2010), 1629-1660.
doi: 10.1512/iumj.2010.59.4025. |
[11] |
H. Brunner, The numerical solution of a weakly singular Volterra integral equations by collocation on graded meshes, Mathematics of Computation, 45 (1985), 417-437.
doi: 10.1090/S0025-5718-1985-0804933-3. |
[12] |
F. F. Chen, Introduction to Plasma Physics, Plenum press, 1974.
doi: 10.1007/978-1-4757-0459-4. |
[13] |
M. Feldman, S.-Y. HA and M. Slemrod,
A Geometric level-set formulation of a plasma sheath interface, Arch. Rat. Mech. Anal., 178 (2005), 81-123.
doi: 10.1007/s00205-005-0368-3. |
[14] |
D. Gérard-Varet, D. Han-Kwan and F. Rousset, Quasineutral limit of the Euler-Poisson system for ions in a domain with boundaries, Indiana Univ. Math. J., 62 (2013), 359-402.
doi: 10.1512/iumj.2013.62.4900. |
[15] |
Y. Guo, C-W. Shu and T. Zhou, The dynamics of a plane diode, SIAM J. Math. Anal., 35 (2004), 1617-1635.
doi: 10.1137/S0036141003421133. |
[16] |
N. Jiang and X. Zhang, The Boltzmann equation with incoming boundary condition : Global solutions and Navier-Stokes limit, SIAM J. Math. A, 51 (2019), 2504-2534.
doi: 10.1137/17M114697X. |
[17] |
C. W. Jurgensen and E. S. G. Shaqfeh, Nonlocal transport models of the self-consistent potential distribution in a plasma sheath with charge transfer collisions, J. Applied Physics, 64 (1988).
doi: 10.1063/1.342077. |
[18] |
J. G. Laframboise, Theory of spherical and cylindrical Langmuir probes in a collision less, Maxwellian plasma at rest, Institute for Aerospace Studies, University of Toronto, Report No. 100, 1966. Google Scholar |
[19] |
G. Manfredi and S. Devaux, Magnetized plasma-wall transition. Consequences for wall sputtering and erosion, Institute of Physics Publishing, 2008. Google Scholar |
[20] |
S. Mischler, On the initial boundary value problem for the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys, 210 (2000), 447–466.
doi: 10.1007/s002200050787. |
[21] |
S. Mukherjee,
Effect of charge exchange collisions on the static properties of a fully collisional ion sheath, IEEE Transactions on Plasma Science, 23 (1995), 816-821.
doi: 10.1109/27.473200. |
[22] |
C. Greengard and P.-A. Raviart,
A Boundary-Value problem for the stationary Vlasov-Poisson equations : The Plane Diode, Communications on Pure and Applied Mathematics, 43 (1990), 473-507.
doi: 10.1002/cpa.3160430404. |
[23] |
K.-U. Riemann, The Bohm criterion and sheath formation, Phys. Plasmas, 24 (1991).
doi: 10.1088/0022-3727/24/4/001. |
[24] |
K.-U. Riemann, Kinetic analysis of the collisional plasma-sheath transition, Journal of Physical D : Applied Physics, 36 (2003).
doi: 10.1088/0022-3727/36/22/007. |
[25] |
J. Schaeffer, Global existence of smooth solutions to the Vlasov Poisson system in three dimensions, Comm. Partial Differential Equations, 16 (1991), 1313-1335.
doi: 10.1080/03605309108820801. |
[26] |
Terrence E. Sheridan, Solution of the plasma-sheath equation with a cool Maxwellian ion source, AIP Publishing, (2001).
doi: 10.1063/1.1391448. |
[27] |
P. Stangeby, The Plasma Boundary of Magnetic Fusion Devices, Institute of Physics Publishing, 2000. Google Scholar |
[28] |
L. Tonks and I. Langmuir, A general theory of the Plasma of an Arc, Physical Review, 1929.
doi: 10.1103/PhysRev.34.876. |
[29] |
F. Valsaque and G. Manfredi, Numerical study of plasma wall transition in an oblique magnetic field, Journal of Nuclear Materials, 290–293 (2001), 763-767.
doi: 10.1016/S0022-3115(00)00454-2. |
show all references
References:
[1] |
S. Andras, Weakly singular Volterra and Fredholm-Volterra integral equations, Studia. Univ. "Babes-Bolyai", Mathematica, 48 2003, 147-155. |
[2] |
A. A. Arsenev, Existence in the large of a weak solution of Vlasov's system of equations, Mat. Mat. Fiz, 15 (1975), 136–147. |
[3] |
M.Badsi, M. Campos Pinto and B. Després, A Minimization formulation of a bi-kinetic sheath, Kinetic and related models, 9 (2016), 621-656.
doi: 10.3934/krm.2016010. |
[4] |
M. Badsi, Linear electron stability for a bi-kinetic sheath model, Journal of Mathematical Analysis and Applications, 453 (2017), 954-972.
doi: 10.1016/j.jmaa.2017.04.055. |
[5] |
C. Bardos and P. Degond, Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data, Annales de l'institut Henri Poincaré, 2 (1985), 101-118.
doi: 10.1016/S0294-1449(16)30405-X. |
[6] |
N. Ben Abdallah, Weak solutions of the initial-boundary value problem for the Vlasov-Poisson system, M2AS, 17 (1994), 451-476
doi: 10.1002/mma.1670170604. |
[7] |
N. Ben Abdallah and J. Dolbeault, Relative entropies for kinetic equations in bounded domains, Arch. Rat. Mech. Anal, 168 (2003), 253-298.
doi: 10.1007/s00205-002-0239-0. |
[8] |
D. Bohm, The characteristics of electrical discharges in magnetic fields, New York: Mc Graw Hill, Chap 3, 1949. Google Scholar |
[9] |
M. Bostan, Existence and uniquness of the mild solution for the 1d Vlasov-Poisson initial-boundary value problem, SIAM J. Math.Anal., 37 (2005), 156-188.
doi: 10.1137/S0036141003434649. |
[10] |
M. Bostan, I. M. Gamba, T. Goudon and A. Vasseur, Boundary Value problems for the stationary Vlasov-Boltzmann-Poisson equation, Indiana Univ. Math., 59 (2010), 1629-1660.
doi: 10.1512/iumj.2010.59.4025. |
[11] |
H. Brunner, The numerical solution of a weakly singular Volterra integral equations by collocation on graded meshes, Mathematics of Computation, 45 (1985), 417-437.
doi: 10.1090/S0025-5718-1985-0804933-3. |
[12] |
F. F. Chen, Introduction to Plasma Physics, Plenum press, 1974.
doi: 10.1007/978-1-4757-0459-4. |
[13] |
M. Feldman, S.-Y. HA and M. Slemrod,
A Geometric level-set formulation of a plasma sheath interface, Arch. Rat. Mech. Anal., 178 (2005), 81-123.
doi: 10.1007/s00205-005-0368-3. |
[14] |
D. Gérard-Varet, D. Han-Kwan and F. Rousset, Quasineutral limit of the Euler-Poisson system for ions in a domain with boundaries, Indiana Univ. Math. J., 62 (2013), 359-402.
doi: 10.1512/iumj.2013.62.4900. |
[15] |
Y. Guo, C-W. Shu and T. Zhou, The dynamics of a plane diode, SIAM J. Math. Anal., 35 (2004), 1617-1635.
doi: 10.1137/S0036141003421133. |
[16] |
N. Jiang and X. Zhang, The Boltzmann equation with incoming boundary condition : Global solutions and Navier-Stokes limit, SIAM J. Math. A, 51 (2019), 2504-2534.
doi: 10.1137/17M114697X. |
[17] |
C. W. Jurgensen and E. S. G. Shaqfeh, Nonlocal transport models of the self-consistent potential distribution in a plasma sheath with charge transfer collisions, J. Applied Physics, 64 (1988).
doi: 10.1063/1.342077. |
[18] |
J. G. Laframboise, Theory of spherical and cylindrical Langmuir probes in a collision less, Maxwellian plasma at rest, Institute for Aerospace Studies, University of Toronto, Report No. 100, 1966. Google Scholar |
[19] |
G. Manfredi and S. Devaux, Magnetized plasma-wall transition. Consequences for wall sputtering and erosion, Institute of Physics Publishing, 2008. Google Scholar |
[20] |
S. Mischler, On the initial boundary value problem for the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys, 210 (2000), 447–466.
doi: 10.1007/s002200050787. |
[21] |
S. Mukherjee,
Effect of charge exchange collisions on the static properties of a fully collisional ion sheath, IEEE Transactions on Plasma Science, 23 (1995), 816-821.
doi: 10.1109/27.473200. |
[22] |
C. Greengard and P.-A. Raviart,
A Boundary-Value problem for the stationary Vlasov-Poisson equations : The Plane Diode, Communications on Pure and Applied Mathematics, 43 (1990), 473-507.
doi: 10.1002/cpa.3160430404. |
[23] |
K.-U. Riemann, The Bohm criterion and sheath formation, Phys. Plasmas, 24 (1991).
doi: 10.1088/0022-3727/24/4/001. |
[24] |
K.-U. Riemann, Kinetic analysis of the collisional plasma-sheath transition, Journal of Physical D : Applied Physics, 36 (2003).
doi: 10.1088/0022-3727/36/22/007. |
[25] |
J. Schaeffer, Global existence of smooth solutions to the Vlasov Poisson system in three dimensions, Comm. Partial Differential Equations, 16 (1991), 1313-1335.
doi: 10.1080/03605309108820801. |
[26] |
Terrence E. Sheridan, Solution of the plasma-sheath equation with a cool Maxwellian ion source, AIP Publishing, (2001).
doi: 10.1063/1.1391448. |
[27] |
P. Stangeby, The Plasma Boundary of Magnetic Fusion Devices, Institute of Physics Publishing, 2000. Google Scholar |
[28] |
L. Tonks and I. Langmuir, A general theory of the Plasma of an Arc, Physical Review, 1929.
doi: 10.1103/PhysRev.34.876. |
[29] |
F. Valsaque and G. Manfredi, Numerical study of plasma wall transition in an oblique magnetic field, Journal of Nuclear Materials, 290–293 (2001), 763-767.
doi: 10.1016/S0022-3115(00)00454-2. |


[1] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[2] |
Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030 |
[3] |
Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009 |
[4] |
Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1747-1756. doi: 10.3934/dcdss.2020452 |
[5] |
Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115 |
[6] |
Andrea Scapin. Electrocommunication for weakly electric fish. Inverse Problems & Imaging, 2020, 14 (1) : 97-115. doi: 10.3934/ipi.2019065 |
[7] |
Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565 |
[8] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[9] |
Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197 |
[10] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[11] |
Luigi Barletti, Giovanni Nastasi, Claudia Negulescu, Vittorio Romano. Mathematical modelling of charge transport in graphene heterojunctions. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021010 |
[12] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[13] |
Andrea Tosin, Mattia Zanella. Uncertainty damping in kinetic traffic models by driver-assist controls. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021018 |
[14] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[15] |
Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021006 |
[16] |
Jingni Guo, Junxiang Xu, Zhenggang He, Wei Liao. Research on cascading failure modes and attack strategies of multimodal transport network. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2020159 |
[17] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[18] |
Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020210 |
[19] |
Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447 |
[20] |
Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021019 |
2019 Impact Factor: 1.311
Tools
Article outline
Figures and Tables
[Back to Top]