January  2021, 14(1): 175-197. doi: 10.3934/krm.2021001

Navier-Stokes limit of globally hyperbolic moment equations

Department of Mathematical Sciences, Tsinghua University, Beijing, China

Received  May 2020 Revised  November 2020 Published  December 2020

This paper is concerned with the Navier-Stokes limit of a class of globally hyperbolic moment equations from the Boltzmann equation. we show that the Navier-Stokes equations can be formally derived from the hyperbolic moment equations for various different collision mechanisms. Furthermore, the formal limit is justified rigorously by using an energy method. It should be noted that the hyperbolic moment equations are in non-conservative form and do not have a convex entropy function, therefore some additional efforts are required in the justification.

Citation: Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001
References:
[1]

L. ArlottiN. Bellomo and M. Lachowicz, Kinetic equations modelling population dynamics, Transport Theory Statist. Phys., 29 (2000), 125-139.  doi: 10.1080/00411450008205864.  Google Scholar

[2]

C. BardosF. Golse and C. D. Levermore, Fluid dynamic limits of kinetic equations, II. Convergence proofs for the Boltzmann equation, Comm. Pure Appl. Math., 46 (1993), 667-753.  doi: 10.1002/cpa.3160460503.  Google Scholar

[3]

P. L. BhatnagarE. P. Gross and M. Krook, A model for collision processes in gases, I. small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94 (1954), 511-525.  doi: 10.1103/PhysRev.94.511.  Google Scholar

[4]

G. A. Bird, Direct simulation and the Boltzmann equation, Phys. Fluids, 13 (1970), 2676-2681.  doi: 10.1063/1.1692849.  Google Scholar

[5]

A. Bobylev and Å. Windfäll, Boltzmann equation and hydrodynamics at the Burnett level, Kinet. Relat. Models, 5 (2012), 237-260.  doi: 10.3934/krm.2012.5.237.  Google Scholar

[6]

L. Boltzmann, Vorlesungen über Gastheorie: Th. Theorie van der Waals', Gase mit zusammengesetzten Molekülen, Gasdissociation; Schlussbemerkungen, vol. 2, JA Barth, 1898. Google Scholar

[7]

N. V. Brilliantov, F. Spahn, J.-M. Hertzsch and T. Pöschel, Model for collisions in granular gases, Phys. Rev. E, 53 (1996), 5382. doi: 10.1103/PhysRevE.53.5382.  Google Scholar

[8]

Z. CaiY. Fan and R. Li, Globally hyperbolic regularization of Grad's moment system in one dimensional space, Commun. Math. Sci., 11 (2013), 547-571.  doi: 10.4310/CMS.2013.v11.n2.a12.  Google Scholar

[9]

Z. CaiY. Fan and R. Li, Globally hyperbolic regularization of Grad's moment system, Comm. Pure Appl. Math., 67 (2014), 464-518.  doi: 10.1002/cpa.21472.  Google Scholar

[10]

Z. CaiY. Fan and R. Li, On hyperbolicity of 13-moment system, Kinet. Relat. Models, 7 (2014), 415-432.  doi: 10.3934/krm.2014.7.415.  Google Scholar

[11]

Z. CaiY. Fan and R. Li, A framework on moment model reduction for kinetic equation, SIAM J. Appl. Math., 75 (2015), 2001-2023.  doi: 10.1137/14100110X.  Google Scholar

[12]

Z. CaiY. FanR. Li and Z. Qiao, Dimension-reduced hyperbolic moment method for the Boltzmann equation with BGK-type collision, Commun. Comput. Phys., 15 (2014), 1368-1406.  doi: 10.4208/cicp.220313.281013a.  Google Scholar

[13]

Z. Cai and M. Torrilhon, Numerical simulation of large hyperbolic moment systems with linear and relaxation production terms, in AIP Conference Proceedings, American Institute of Physics, 1628 (2014), 1040–1047. doi: 10.1063/1.4902708.  Google Scholar

[14]

C. Cercignani, The Boltzmann equation, in The Boltzmann Equation and Its Applications, Springer, 1988, 40–103. doi: 10.1007/978-1-4612-1039-9.  Google Scholar

[15] S. ChapmanT. G. Cowling and D. Burnett, The Mathematical Theory of Non-Uniform Gases: An Account of The Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, Cambridge university press, 1960.   Google Scholar
[16]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Volume 325 of Grundlehren Der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]., Springer-Verlag, Berlin, second edition, 2005. doi: 10.1007/3-540-29089-3.  Google Scholar

[17]

Y. DiY. FanR. Li and L. Zheng, Linear stability of hyperbolic moment models for Boltzmann equation, Numer. Math. Theory Methods Appl., 10 (2017), 255-277.  doi: 10.4208/nmtma.2017.s04.  Google Scholar

[18]

G. Dimarco and L. Pareschi, Numerical methods for kinetic equations, Acta Numer., 23 (2014), 369-520.  doi: 10.1017/S0962492914000063.  Google Scholar

[19]

R. J. DiPerna and P.-L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. of Math., 321–366. doi: 10.2307/1971423.  Google Scholar

[20]

R. EspositoY. GuoC. Kim and R. Marra, Stationary solutions to the Boltzmann equation in the hydrodynamic limit, Ann. PDE, 4 (2018), 1-119.  doi: 10.1007/s40818-017-0037-5.  Google Scholar

[21]

Y. FanJ. KoellermeierJ. LiR. Li and M. Torrilhon, Model reduction of kinetic equations by operator projection, J. Stat. Phys., 162 (2016), 457-486.  doi: 10.1007/s10955-015-1384-9.  Google Scholar

[22]

Y. FanR. Li and L. Zheng, A nonlinear hyperbolic model for radiative transfer equation in slab geometry, SIAM J. Appl. Math., 80 (2020), 2388-2419.  doi: 10.1137/19M126774X.  Google Scholar

[23]

L. S. García-ColínR. M. Velasco and F. J. Uribe, Beyond the Navier-Stokes equations: Burnett hydrodynamics, Phys. Rep., 465 (2008), 149-189.  doi: 10.1016/j.physrep.2008.04.010.  Google Scholar

[24]

F. Golse and L. Saint-Raymond, The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels, Invent. Math., 155 (2004), 81-161.  doi: 10.1007/s00222-003-0316-5.  Google Scholar

[25]

H. Grad, On the kinetic theory of rarefied gases, Comm. Pure Appl. Math., 2 (1949), 331-407.  doi: 10.1002/cpa.3160020403.  Google Scholar

[26]

Y. Guo, Boltzmann diffusive limit beyond the Navier-Stokes approximation, Comm. Pure Appl. Math., 59 (2006), 626-687.  doi: 10.1002/cpa.20121.  Google Scholar

[27]

M. Henon, Vlasov equation, Astronom. and Astrophys., 114 (1982), 211-212.   Google Scholar

[28]

L. H. Holway Jr, New statistical models for kinetic theory: Methods of construction, Phys. Fluids, 9 (1966), 1658-1673.  doi: 10.1063/1.1761920.  Google Scholar

[29]

Q. HuangS. Li and W.-A. Yong, Stability analysis of quadrature-based moment methods for kinetic equations, SIAM J. Appl. Math., 80 (2020), 206-231.  doi: 10.1137/18M1231845.  Google Scholar

[30]

S. Kawashima, Systems of A Hyperbolic-Parabolic Composite Type, with Applications to The Equations of Magnetohydrodynamics, Ph.D thesis, Kyoto University, 1984. doi: 10.14989/doctor.k3193.  Google Scholar

[31]

S. Kawashima and Y. Shizuta, On the normal form of the symmetric hyperbolic-parabolic systems associated with the conservation laws, Tohoku Math. J., 40 (1988), 449-464.  doi: 10.2748/tmj/1178227986.  Google Scholar

[32]

S. Kawashima and W.-A. Yong, Dissipative structure and entropy for hyperbolic systems of balance laws, Arch. Ration. Mech. Anal., 174 (2004), 345-364.  doi: 10.1007/s00205-004-0330-9.  Google Scholar

[33]

G. M. Kremer, An Introduction to The Boltzmann Equation and Transport Processes in Gases, Springer Science & Business Media, 2010. doi: 10.1007/978-3-642-11696-4.  Google Scholar

[34]

C. D. Levermore, Moment closure hierarchies for kinetic theories, J. Stat. Phys., 83 (1996), 1021-1065.  doi: 10.1007/BF02179552.  Google Scholar

[35]

A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, vol. 53, Springer Science & Business Media, 1984. doi: 10.1007/978-1-4612-1116-7.  Google Scholar

[36]

L. Mieussens, Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynamics, Math. Models Methods Appl. Sci., 10 (2000), 1121-1149.  doi: 10.1142/S0218202500000562.  Google Scholar

[37]

I. Müller and T. Ruggeri, Rational Extended Thermodynamics, vol. 37, Springer Science & Business Media, 1998. doi: 10.1007/978-1-4612-2210-1.  Google Scholar

[38] D. Serre, Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves, Cambridge University Press, 1999.   Google Scholar
[39]

E. M. Shakhov, Generalization of the Krook kinetic relaxation equation, Fluid Dynamics, 3 (1968), 95-96.  doi: 10.1007/BF01029546.  Google Scholar

[40]

H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows, Springer, 2005  Google Scholar

[41]

H. Struchtrup and M. Torrilhon, Regularization of Grad's 13 moment equations: Derivation and linear analysis, Phys. Fluids, 15 (2003), 2668-2680.  doi: 10.1063/1.1597472.  Google Scholar

[42]

K. T. Waldeer, The direct simulation Monte Carlo method applied to a Boltzmann-like vehicular traffic flow model, Comput. Phys. Commun., 156 (2003), 1-12.  doi: 10.1016/S0010-4655(03)00368-0.  Google Scholar

[43]

Y. Wang and Z. Cai, Approximation of the Boltzmann collision operator based on Hermite spectral method, J. Comput. Phys., 397 (2019), 108815, 23pp. doi: 10.1016/j.jcp.2019.07.014.  Google Scholar

[44]

E. P. Wigner, On the quantum correction for thermodynamic equilibrium, in Part I: Physical Chemistry, Part II: Solid State Physics, Springer, (1997), 110–120. doi: 10.1007/978-3-642-59033-7_9.  Google Scholar

[45]

Z. Yang and W.-A. Yong, Validity of the Chapman-Enskog expansion for a class of hyperbolic relaxation systems, J. Differential Equations, 258 (2015), 2745–-2766. doi: 10.1016/j.jde.2014.12.024.  Google Scholar

[46]

W.-A. Yong, Singular perturbations of first-order hyperbolic systems, in Nonlinear Hyperbolic Problems: Theoretical, Applied, and Computational Aspects, Springer, (1993), 597–604.  Google Scholar

[47]

W.-A. Yong, Singular perturbations of first-order hyperbolic systems with stiff source terms, J. Differential Equations, 155 (1999), 89-132.  doi: 10.1006/jdeq.1998.3584.  Google Scholar

[48]

W.-A. Yong, Basic aspects of hyperbolic relaxation systems, in Advances in The Theory of Shock Waves, Springer, 2001,259–305.  Google Scholar

[49]

W.-A. Yong, An interesting class of partial differential equations, J. Math. Phys., 49 (2008), 033503, 21pp. doi: 10.1063/1.2884710.  Google Scholar

[50]

W. ZhaoJ. Huang and W.-A. Yong, Boundary conditions for kinetic theory based models I: Lattice Boltzmann models, Multiscale Model. Simul., 17 (2019), 854-872.  doi: 10.1137/18M1201986.  Google Scholar

[51]

W. ZhaoW.-A. Yong and L.-S. Luo, Stability analysis of a class of globally hyperbolic moment system, Commun. Math. Sci., 15 (2017), 609-633.  doi: 10.4310/CMS.2017.v15.n3.a3.  Google Scholar

show all references

References:
[1]

L. ArlottiN. Bellomo and M. Lachowicz, Kinetic equations modelling population dynamics, Transport Theory Statist. Phys., 29 (2000), 125-139.  doi: 10.1080/00411450008205864.  Google Scholar

[2]

C. BardosF. Golse and C. D. Levermore, Fluid dynamic limits of kinetic equations, II. Convergence proofs for the Boltzmann equation, Comm. Pure Appl. Math., 46 (1993), 667-753.  doi: 10.1002/cpa.3160460503.  Google Scholar

[3]

P. L. BhatnagarE. P. Gross and M. Krook, A model for collision processes in gases, I. small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94 (1954), 511-525.  doi: 10.1103/PhysRev.94.511.  Google Scholar

[4]

G. A. Bird, Direct simulation and the Boltzmann equation, Phys. Fluids, 13 (1970), 2676-2681.  doi: 10.1063/1.1692849.  Google Scholar

[5]

A. Bobylev and Å. Windfäll, Boltzmann equation and hydrodynamics at the Burnett level, Kinet. Relat. Models, 5 (2012), 237-260.  doi: 10.3934/krm.2012.5.237.  Google Scholar

[6]

L. Boltzmann, Vorlesungen über Gastheorie: Th. Theorie van der Waals', Gase mit zusammengesetzten Molekülen, Gasdissociation; Schlussbemerkungen, vol. 2, JA Barth, 1898. Google Scholar

[7]

N. V. Brilliantov, F. Spahn, J.-M. Hertzsch and T. Pöschel, Model for collisions in granular gases, Phys. Rev. E, 53 (1996), 5382. doi: 10.1103/PhysRevE.53.5382.  Google Scholar

[8]

Z. CaiY. Fan and R. Li, Globally hyperbolic regularization of Grad's moment system in one dimensional space, Commun. Math. Sci., 11 (2013), 547-571.  doi: 10.4310/CMS.2013.v11.n2.a12.  Google Scholar

[9]

Z. CaiY. Fan and R. Li, Globally hyperbolic regularization of Grad's moment system, Comm. Pure Appl. Math., 67 (2014), 464-518.  doi: 10.1002/cpa.21472.  Google Scholar

[10]

Z. CaiY. Fan and R. Li, On hyperbolicity of 13-moment system, Kinet. Relat. Models, 7 (2014), 415-432.  doi: 10.3934/krm.2014.7.415.  Google Scholar

[11]

Z. CaiY. Fan and R. Li, A framework on moment model reduction for kinetic equation, SIAM J. Appl. Math., 75 (2015), 2001-2023.  doi: 10.1137/14100110X.  Google Scholar

[12]

Z. CaiY. FanR. Li and Z. Qiao, Dimension-reduced hyperbolic moment method for the Boltzmann equation with BGK-type collision, Commun. Comput. Phys., 15 (2014), 1368-1406.  doi: 10.4208/cicp.220313.281013a.  Google Scholar

[13]

Z. Cai and M. Torrilhon, Numerical simulation of large hyperbolic moment systems with linear and relaxation production terms, in AIP Conference Proceedings, American Institute of Physics, 1628 (2014), 1040–1047. doi: 10.1063/1.4902708.  Google Scholar

[14]

C. Cercignani, The Boltzmann equation, in The Boltzmann Equation and Its Applications, Springer, 1988, 40–103. doi: 10.1007/978-1-4612-1039-9.  Google Scholar

[15] S. ChapmanT. G. Cowling and D. Burnett, The Mathematical Theory of Non-Uniform Gases: An Account of The Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, Cambridge university press, 1960.   Google Scholar
[16]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Volume 325 of Grundlehren Der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]., Springer-Verlag, Berlin, second edition, 2005. doi: 10.1007/3-540-29089-3.  Google Scholar

[17]

Y. DiY. FanR. Li and L. Zheng, Linear stability of hyperbolic moment models for Boltzmann equation, Numer. Math. Theory Methods Appl., 10 (2017), 255-277.  doi: 10.4208/nmtma.2017.s04.  Google Scholar

[18]

G. Dimarco and L. Pareschi, Numerical methods for kinetic equations, Acta Numer., 23 (2014), 369-520.  doi: 10.1017/S0962492914000063.  Google Scholar

[19]

R. J. DiPerna and P.-L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. of Math., 321–366. doi: 10.2307/1971423.  Google Scholar

[20]

R. EspositoY. GuoC. Kim and R. Marra, Stationary solutions to the Boltzmann equation in the hydrodynamic limit, Ann. PDE, 4 (2018), 1-119.  doi: 10.1007/s40818-017-0037-5.  Google Scholar

[21]

Y. FanJ. KoellermeierJ. LiR. Li and M. Torrilhon, Model reduction of kinetic equations by operator projection, J. Stat. Phys., 162 (2016), 457-486.  doi: 10.1007/s10955-015-1384-9.  Google Scholar

[22]

Y. FanR. Li and L. Zheng, A nonlinear hyperbolic model for radiative transfer equation in slab geometry, SIAM J. Appl. Math., 80 (2020), 2388-2419.  doi: 10.1137/19M126774X.  Google Scholar

[23]

L. S. García-ColínR. M. Velasco and F. J. Uribe, Beyond the Navier-Stokes equations: Burnett hydrodynamics, Phys. Rep., 465 (2008), 149-189.  doi: 10.1016/j.physrep.2008.04.010.  Google Scholar

[24]

F. Golse and L. Saint-Raymond, The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels, Invent. Math., 155 (2004), 81-161.  doi: 10.1007/s00222-003-0316-5.  Google Scholar

[25]

H. Grad, On the kinetic theory of rarefied gases, Comm. Pure Appl. Math., 2 (1949), 331-407.  doi: 10.1002/cpa.3160020403.  Google Scholar

[26]

Y. Guo, Boltzmann diffusive limit beyond the Navier-Stokes approximation, Comm. Pure Appl. Math., 59 (2006), 626-687.  doi: 10.1002/cpa.20121.  Google Scholar

[27]

M. Henon, Vlasov equation, Astronom. and Astrophys., 114 (1982), 211-212.   Google Scholar

[28]

L. H. Holway Jr, New statistical models for kinetic theory: Methods of construction, Phys. Fluids, 9 (1966), 1658-1673.  doi: 10.1063/1.1761920.  Google Scholar

[29]

Q. HuangS. Li and W.-A. Yong, Stability analysis of quadrature-based moment methods for kinetic equations, SIAM J. Appl. Math., 80 (2020), 206-231.  doi: 10.1137/18M1231845.  Google Scholar

[30]

S. Kawashima, Systems of A Hyperbolic-Parabolic Composite Type, with Applications to The Equations of Magnetohydrodynamics, Ph.D thesis, Kyoto University, 1984. doi: 10.14989/doctor.k3193.  Google Scholar

[31]

S. Kawashima and Y. Shizuta, On the normal form of the symmetric hyperbolic-parabolic systems associated with the conservation laws, Tohoku Math. J., 40 (1988), 449-464.  doi: 10.2748/tmj/1178227986.  Google Scholar

[32]

S. Kawashima and W.-A. Yong, Dissipative structure and entropy for hyperbolic systems of balance laws, Arch. Ration. Mech. Anal., 174 (2004), 345-364.  doi: 10.1007/s00205-004-0330-9.  Google Scholar

[33]

G. M. Kremer, An Introduction to The Boltzmann Equation and Transport Processes in Gases, Springer Science & Business Media, 2010. doi: 10.1007/978-3-642-11696-4.  Google Scholar

[34]

C. D. Levermore, Moment closure hierarchies for kinetic theories, J. Stat. Phys., 83 (1996), 1021-1065.  doi: 10.1007/BF02179552.  Google Scholar

[35]

A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, vol. 53, Springer Science & Business Media, 1984. doi: 10.1007/978-1-4612-1116-7.  Google Scholar

[36]

L. Mieussens, Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynamics, Math. Models Methods Appl. Sci., 10 (2000), 1121-1149.  doi: 10.1142/S0218202500000562.  Google Scholar

[37]

I. Müller and T. Ruggeri, Rational Extended Thermodynamics, vol. 37, Springer Science & Business Media, 1998. doi: 10.1007/978-1-4612-2210-1.  Google Scholar

[38] D. Serre, Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves, Cambridge University Press, 1999.   Google Scholar
[39]

E. M. Shakhov, Generalization of the Krook kinetic relaxation equation, Fluid Dynamics, 3 (1968), 95-96.  doi: 10.1007/BF01029546.  Google Scholar

[40]

H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows, Springer, 2005  Google Scholar

[41]

H. Struchtrup and M. Torrilhon, Regularization of Grad's 13 moment equations: Derivation and linear analysis, Phys. Fluids, 15 (2003), 2668-2680.  doi: 10.1063/1.1597472.  Google Scholar

[42]

K. T. Waldeer, The direct simulation Monte Carlo method applied to a Boltzmann-like vehicular traffic flow model, Comput. Phys. Commun., 156 (2003), 1-12.  doi: 10.1016/S0010-4655(03)00368-0.  Google Scholar

[43]

Y. Wang and Z. Cai, Approximation of the Boltzmann collision operator based on Hermite spectral method, J. Comput. Phys., 397 (2019), 108815, 23pp. doi: 10.1016/j.jcp.2019.07.014.  Google Scholar

[44]

E. P. Wigner, On the quantum correction for thermodynamic equilibrium, in Part I: Physical Chemistry, Part II: Solid State Physics, Springer, (1997), 110–120. doi: 10.1007/978-3-642-59033-7_9.  Google Scholar

[45]

Z. Yang and W.-A. Yong, Validity of the Chapman-Enskog expansion for a class of hyperbolic relaxation systems, J. Differential Equations, 258 (2015), 2745–-2766. doi: 10.1016/j.jde.2014.12.024.  Google Scholar

[46]

W.-A. Yong, Singular perturbations of first-order hyperbolic systems, in Nonlinear Hyperbolic Problems: Theoretical, Applied, and Computational Aspects, Springer, (1993), 597–604.  Google Scholar

[47]

W.-A. Yong, Singular perturbations of first-order hyperbolic systems with stiff source terms, J. Differential Equations, 155 (1999), 89-132.  doi: 10.1006/jdeq.1998.3584.  Google Scholar

[48]

W.-A. Yong, Basic aspects of hyperbolic relaxation systems, in Advances in The Theory of Shock Waves, Springer, 2001,259–305.  Google Scholar

[49]

W.-A. Yong, An interesting class of partial differential equations, J. Math. Phys., 49 (2008), 033503, 21pp. doi: 10.1063/1.2884710.  Google Scholar

[50]

W. ZhaoJ. Huang and W.-A. Yong, Boundary conditions for kinetic theory based models I: Lattice Boltzmann models, Multiscale Model. Simul., 17 (2019), 854-872.  doi: 10.1137/18M1201986.  Google Scholar

[51]

W. ZhaoW.-A. Yong and L.-S. Luo, Stability analysis of a class of globally hyperbolic moment system, Commun. Math. Sci., 15 (2017), 609-633.  doi: 10.4310/CMS.2017.v15.n3.a3.  Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[3]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[4]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[5]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[6]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[7]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[8]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[9]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[10]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[11]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

[12]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[13]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[14]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[15]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[16]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[17]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[18]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

[19]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

[20]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (36)
  • HTML views (31)
  • Cited by (0)

Other articles
by authors

[Back to Top]