April  2021, 14(2): 199-209. doi: 10.3934/krm.2021002

Captivity of the solution to the granular media equation

Univ Lyon, Université Jean Monnet, CNRS UMR 5208, Institut Camille Jordan, Maison de l'Université, 10 rue Tréfilerie, CS 82301, 42023 Saint-Átienne Cedex 2, France

* Corresponding author: Julian Tugaut

Received  June 2020 Revised  October 2020 Published  April 2021 Early access  December 2020

The goal of the current paper is to provide assumptions under which the limiting probability of the granular media equation is known when there are several stable states. Indeed, it has been proved in our previous works [17,18] that there is convergence. However, very few is known about the limiting probability, even with a small diffusion coefficient.

Citation: Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002
References:
[1]

D. BenedettoE. CagliotiJ. A. Carrillo and M. Pulvirenti, A non-Maxwellian steady distribution for one-dimensional granular media, J. Statist. Phys., 91 (1998), 979-990.  doi: 10.1023/A:1023032000560.  Google Scholar

[2]

S. BenachourB. RoynetteD. Talay and P. Vallois, Nonlinear self-stabilizing processes. I. Existence, invariant probability, propagation of chaos, Stochastic Process. Appl., 75 (1998), 173-201.  doi: 10.1016/S0304-4149(98)00018-0.  Google Scholar

[3]

S. BenachourB. Roynette and P. Vallois, Nonlinear self-stabilizing processes. II. Convergence to invariant probability, Stochastic Process. Appl., 75 (1998), 203-224.  doi: 10.1016/S0304-4149(98)00019-2.  Google Scholar

[4]

P. CattiauxA. Guillin and F. Malrieu, Probabilistic approach for granular media equations in the non-uniformly convex case, Probab. Theory Related Fields, 140 (2008), 19-40.  doi: 10.1007/s00440-007-0056-3.  Google Scholar

[5]

J. A. CarrilloR. J. McCann and C. Villani, Kinetic equilibration rates for granular media and related equations: Entropy dissipation and mass transportation estimates, Rev. Mat. Iberoamericana, 19 (2003), 971-1018.  doi: 10.4171/RMI/376.  Google Scholar

[6]

J. A. CarrilloR. J. McCann and C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media, Arch. Ration. Mech. Anal., 179 (2006), 217-263.  doi: 10.1007/s00205-005-0386-1.  Google Scholar

[7]

Samuel HerrmannPeter Imkeller and Dierk Peithmann, Large deviations and a Kramers' type law for self-stabilizing diffusions, Ann. Appl. Probab., 18 (2008), 1379-1423.  doi: 10.1214/07-AAP489.  Google Scholar

[8]

S. Herrmann and J. Tugaut, Non-uniqueness of stationary measures for self-stabilizing processes, Stochastic Process. Appl., 120 (2010), 1215-1246.  doi: 10.1016/j.spa.2010.03.009.  Google Scholar

[9]

S. Herrmann and J. Tugaut, Stationary measures for self-stabilizing processes: Asymptotic analysis in the small noise limit, Electron. J. Probab., 15 (2010), 2087-2116.  doi: 10.1214/EJP.v15-842.  Google Scholar

[10]

S. Herrmann and J. Tugaut, Self-stabilizing processes: Uniqueness problem for stationary measures and convergence rate in the small noise limit, ESAIM Probability and statistics, 16 (2012), 277-305.  doi: 10.1051/ps/2011152.  Google Scholar

[11]

M. Kac, Probability and Related Topics in Physical Sciences, With special lectures by G. E. Uhlenbeck, A. R. Hibbs and B. van der Pol. Lectures in Applied Mathematics, Proceedings of the Summer Seminar, Boulder, Colo., 1957, Vol. I Interscience Publishers, London-New York 1959.  Google Scholar

[12]

F. Malrieu, Logarithmic Sobolev inequalities for some nonlinear PDE's, Stochastic Process. Appl., 95 (2001), 109-132.  doi: 10.1016/S0304-4149(01)00095-3.  Google Scholar

[13]

Fl orent Malrieu, Convergence to equilibrium for granular media equations and their Euler schemes, Ann. Appl. Probab., 13 (2003), 540-560.  doi: 10.1214/aoap/1050689593.  Google Scholar

[14]

H. P. McKean. Jr, A class of Markov processes associated with nonlinear parabolic equations, Proc. Nat. Acad. Sci. U.S.A., 56 (1966), 1907-1911.  doi: 10.1073/pnas.56.6.1907.  Google Scholar

[15]

H. P. McKean. Jr, Propagation of chaos for a class of nonlinear parabolic equations, in Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, Catholic Univ., 1967), Air Force Office Sci. Res., Arlington, Va., (1967), 41–57.  Google Scholar

[16]

Yo zo Tamura, On asymptotic behaviors of the solution of a nonlinear diffusion equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 31 (1984), 195-221.   Google Scholar

[17]

J. Tugaut, Convergence to the equilibria for self-stabilizing processes in double-well landscape, Ann. Probab., 41 (2013), 1427-1460.  doi: 10.1214/12-AOP749.  Google Scholar

[18]

J. Tugaut, Self-stabilizing processes in multi-wells landscape in $\mathbb{R}^d$ - Convergence, Stochastic Processes and Their Applications, 123 (2013), 1780-1801.  doi: 10.1016/j.spa.2012.12.003.  Google Scholar

[19]

J. Tugaut, Phase transitions of McKean-Vlasov processes in double-wells landscape, Stochastics, 86 (2014), 257-284.  doi: 10.1080/17442508.2013.775287.  Google Scholar

[20]

J. Tugaut, Self-stabilizing processes in multi-wells landscape in $\mathbb{R}^d$ - Invariant probabilities, J. Theoret. Probab., 27 (2014), 57-79.  doi: 10.1007/s10959-012-0435-2.  Google Scholar

[21]

J. Tugaut, Exit-problem of McKean-Vlasov diffusions in double-well landscape, J. Theoret. Probab., 31 (2018), 1013-1023.  doi: 10.1007/s10959-016-0737-x.  Google Scholar

show all references

References:
[1]

D. BenedettoE. CagliotiJ. A. Carrillo and M. Pulvirenti, A non-Maxwellian steady distribution for one-dimensional granular media, J. Statist. Phys., 91 (1998), 979-990.  doi: 10.1023/A:1023032000560.  Google Scholar

[2]

S. BenachourB. RoynetteD. Talay and P. Vallois, Nonlinear self-stabilizing processes. I. Existence, invariant probability, propagation of chaos, Stochastic Process. Appl., 75 (1998), 173-201.  doi: 10.1016/S0304-4149(98)00018-0.  Google Scholar

[3]

S. BenachourB. Roynette and P. Vallois, Nonlinear self-stabilizing processes. II. Convergence to invariant probability, Stochastic Process. Appl., 75 (1998), 203-224.  doi: 10.1016/S0304-4149(98)00019-2.  Google Scholar

[4]

P. CattiauxA. Guillin and F. Malrieu, Probabilistic approach for granular media equations in the non-uniformly convex case, Probab. Theory Related Fields, 140 (2008), 19-40.  doi: 10.1007/s00440-007-0056-3.  Google Scholar

[5]

J. A. CarrilloR. J. McCann and C. Villani, Kinetic equilibration rates for granular media and related equations: Entropy dissipation and mass transportation estimates, Rev. Mat. Iberoamericana, 19 (2003), 971-1018.  doi: 10.4171/RMI/376.  Google Scholar

[6]

J. A. CarrilloR. J. McCann and C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media, Arch. Ration. Mech. Anal., 179 (2006), 217-263.  doi: 10.1007/s00205-005-0386-1.  Google Scholar

[7]

Samuel HerrmannPeter Imkeller and Dierk Peithmann, Large deviations and a Kramers' type law for self-stabilizing diffusions, Ann. Appl. Probab., 18 (2008), 1379-1423.  doi: 10.1214/07-AAP489.  Google Scholar

[8]

S. Herrmann and J. Tugaut, Non-uniqueness of stationary measures for self-stabilizing processes, Stochastic Process. Appl., 120 (2010), 1215-1246.  doi: 10.1016/j.spa.2010.03.009.  Google Scholar

[9]

S. Herrmann and J. Tugaut, Stationary measures for self-stabilizing processes: Asymptotic analysis in the small noise limit, Electron. J. Probab., 15 (2010), 2087-2116.  doi: 10.1214/EJP.v15-842.  Google Scholar

[10]

S. Herrmann and J. Tugaut, Self-stabilizing processes: Uniqueness problem for stationary measures and convergence rate in the small noise limit, ESAIM Probability and statistics, 16 (2012), 277-305.  doi: 10.1051/ps/2011152.  Google Scholar

[11]

M. Kac, Probability and Related Topics in Physical Sciences, With special lectures by G. E. Uhlenbeck, A. R. Hibbs and B. van der Pol. Lectures in Applied Mathematics, Proceedings of the Summer Seminar, Boulder, Colo., 1957, Vol. I Interscience Publishers, London-New York 1959.  Google Scholar

[12]

F. Malrieu, Logarithmic Sobolev inequalities for some nonlinear PDE's, Stochastic Process. Appl., 95 (2001), 109-132.  doi: 10.1016/S0304-4149(01)00095-3.  Google Scholar

[13]

Fl orent Malrieu, Convergence to equilibrium for granular media equations and their Euler schemes, Ann. Appl. Probab., 13 (2003), 540-560.  doi: 10.1214/aoap/1050689593.  Google Scholar

[14]

H. P. McKean. Jr, A class of Markov processes associated with nonlinear parabolic equations, Proc. Nat. Acad. Sci. U.S.A., 56 (1966), 1907-1911.  doi: 10.1073/pnas.56.6.1907.  Google Scholar

[15]

H. P. McKean. Jr, Propagation of chaos for a class of nonlinear parabolic equations, in Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, Catholic Univ., 1967), Air Force Office Sci. Res., Arlington, Va., (1967), 41–57.  Google Scholar

[16]

Yo zo Tamura, On asymptotic behaviors of the solution of a nonlinear diffusion equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 31 (1984), 195-221.   Google Scholar

[17]

J. Tugaut, Convergence to the equilibria for self-stabilizing processes in double-well landscape, Ann. Probab., 41 (2013), 1427-1460.  doi: 10.1214/12-AOP749.  Google Scholar

[18]

J. Tugaut, Self-stabilizing processes in multi-wells landscape in $\mathbb{R}^d$ - Convergence, Stochastic Processes and Their Applications, 123 (2013), 1780-1801.  doi: 10.1016/j.spa.2012.12.003.  Google Scholar

[19]

J. Tugaut, Phase transitions of McKean-Vlasov processes in double-wells landscape, Stochastics, 86 (2014), 257-284.  doi: 10.1080/17442508.2013.775287.  Google Scholar

[20]

J. Tugaut, Self-stabilizing processes in multi-wells landscape in $\mathbb{R}^d$ - Invariant probabilities, J. Theoret. Probab., 27 (2014), 57-79.  doi: 10.1007/s10959-012-0435-2.  Google Scholar

[21]

J. Tugaut, Exit-problem of McKean-Vlasov diffusions in double-well landscape, J. Theoret. Probab., 31 (2018), 1013-1023.  doi: 10.1007/s10959-016-0737-x.  Google Scholar

[1]

Stéphane Mischler, Clément Mouhot. Stability, convergence to the steady state and elastic limit for the Boltzmann equation for diffusively excited granular media. Discrete & Continuous Dynamical Systems, 2009, 24 (1) : 159-185. doi: 10.3934/dcds.2009.24.159

[2]

Dingshi Li, Kening Lu, Bixiang Wang, Xiaohu Wang. Limiting dynamics for non-autonomous stochastic retarded reaction-diffusion equations on thin domains. Discrete & Continuous Dynamical Systems, 2019, 39 (7) : 3717-3747. doi: 10.3934/dcds.2019151

[3]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[4]

Martial Agueh, Guillaume Carlier, Reinhard Illner. Remarks on a class of kinetic models of granular media: Asymptotics and entropy bounds. Kinetic & Related Models, 2015, 8 (2) : 201-214. doi: 10.3934/krm.2015.8.201

[5]

Andrea L. Bertozzi, Dejan Slepcev. Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1617-1637. doi: 10.3934/cpaa.2010.9.1617

[6]

Michihiro Hirayama. Periodic probability measures are dense in the set of invariant measures. Discrete & Continuous Dynamical Systems, 2003, 9 (5) : 1185-1192. doi: 10.3934/dcds.2003.9.1185

[7]

Fabio Camilli, Lars Grüne. Characterizing attraction probabilities via the stochastic Zubov equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 457-468. doi: 10.3934/dcdsb.2003.3.457

[8]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3109-3140. doi: 10.3934/dcds.2020400

[9]

Jaan Janno, Kairi Kasemets. Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (1) : 125-149. doi: 10.3934/ipi.2017007

[10]

Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Uniqueness of solutions for the non-cutoff Boltzmann equation with soft potential. Kinetic & Related Models, 2011, 4 (4) : 919-934. doi: 10.3934/krm.2011.4.919

[11]

Martin Bauer, Thomas Fidler, Markus Grasmair. Local uniqueness of the circular integral invariant. Inverse Problems & Imaging, 2013, 7 (1) : 107-122. doi: 10.3934/ipi.2013.7.107

[12]

Matthias Büger, Marcus R.W. Martin. Stabilizing control for an unbounded state-dependent delay equation. Conference Publications, 2001, 2001 (Special) : 56-65. doi: 10.3934/proc.2001.2001.56

[13]

Adrien Blanchet, Philippe Laurençot. Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion. Communications on Pure & Applied Analysis, 2012, 11 (1) : 47-60. doi: 10.3934/cpaa.2012.11.47

[14]

Simon Lloyd, Edson Vargas. Critical covering maps without absolutely continuous invariant probability measure. Discrete & Continuous Dynamical Systems, 2019, 39 (5) : 2393-2412. doi: 10.3934/dcds.2019101

[15]

Aníbal Rodríguez-Bernal, Alejandro Vidal–López. Existence, uniqueness and attractivity properties of positive complete trajectories for non-autonomous reaction-diffusion problems. Discrete & Continuous Dynamical Systems, 2007, 18 (2&3) : 537-567. doi: 10.3934/dcds.2007.18.537

[16]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. On a limiting system in the Lotka--Volterra competition with cross-diffusion. Discrete & Continuous Dynamical Systems, 2004, 10 (1&2) : 435-458. doi: 10.3934/dcds.2004.10.435

[17]

Kimie Nakashima, Wei-Ming Ni, Linlin Su. An indefinite nonlinear diffusion problem in population genetics, I: Existence and limiting profiles. Discrete & Continuous Dynamical Systems, 2010, 27 (2) : 617-641. doi: 10.3934/dcds.2010.27.617

[18]

Gaocheng Yue. Limiting behavior of trajectory attractors of perturbed reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5673-5694. doi: 10.3934/dcdsb.2019101

[19]

Peter V. Gordon, Cyrill B. Muratov. Self-similarity and long-time behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source. Networks & Heterogeneous Media, 2012, 7 (4) : 767-780. doi: 10.3934/nhm.2012.7.767

[20]

Mourad Bellassoued, Ibtissem Ben Aïcha, Zouhour Rezig. Stable determination of a vector field in a non-Self-Adjoint dynamical Schrödinger equation on Riemannian manifolds. Mathematical Control & Related Fields, 2021, 11 (2) : 403-431. doi: 10.3934/mcrf.2020042

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (119)
  • HTML views (179)
  • Cited by (0)

Other articles
by authors

[Back to Top]