doi: 10.3934/krm.2021002

Captivity of the solution to the granular media equation

Univ Lyon, Université Jean Monnet, CNRS UMR 5208, Institut Camille Jordan, Maison de l'Université, 10 rue Tréfilerie, CS 82301, 42023 Saint-Átienne Cedex 2, France

* Corresponding author: Julian Tugaut

Received  June 2020 Revised  October 2020 Published  December 2020

The goal of the current paper is to provide assumptions under which the limiting probability of the granular media equation is known when there are several stable states. Indeed, it has been proved in our previous works [17,18] that there is convergence. However, very few is known about the limiting probability, even with a small diffusion coefficient.

Citation: Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, doi: 10.3934/krm.2021002
References:
[1]

D. BenedettoE. CagliotiJ. A. Carrillo and M. Pulvirenti, A non-Maxwellian steady distribution for one-dimensional granular media, J. Statist. Phys., 91 (1998), 979-990.  doi: 10.1023/A:1023032000560.  Google Scholar

[2]

S. BenachourB. RoynetteD. Talay and P. Vallois, Nonlinear self-stabilizing processes. I. Existence, invariant probability, propagation of chaos, Stochastic Process. Appl., 75 (1998), 173-201.  doi: 10.1016/S0304-4149(98)00018-0.  Google Scholar

[3]

S. BenachourB. Roynette and P. Vallois, Nonlinear self-stabilizing processes. II. Convergence to invariant probability, Stochastic Process. Appl., 75 (1998), 203-224.  doi: 10.1016/S0304-4149(98)00019-2.  Google Scholar

[4]

P. CattiauxA. Guillin and F. Malrieu, Probabilistic approach for granular media equations in the non-uniformly convex case, Probab. Theory Related Fields, 140 (2008), 19-40.  doi: 10.1007/s00440-007-0056-3.  Google Scholar

[5]

J. A. CarrilloR. J. McCann and C. Villani, Kinetic equilibration rates for granular media and related equations: Entropy dissipation and mass transportation estimates, Rev. Mat. Iberoamericana, 19 (2003), 971-1018.  doi: 10.4171/RMI/376.  Google Scholar

[6]

J. A. CarrilloR. J. McCann and C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media, Arch. Ration. Mech. Anal., 179 (2006), 217-263.  doi: 10.1007/s00205-005-0386-1.  Google Scholar

[7]

Samuel HerrmannPeter Imkeller and Dierk Peithmann, Large deviations and a Kramers' type law for self-stabilizing diffusions, Ann. Appl. Probab., 18 (2008), 1379-1423.  doi: 10.1214/07-AAP489.  Google Scholar

[8]

S. Herrmann and J. Tugaut, Non-uniqueness of stationary measures for self-stabilizing processes, Stochastic Process. Appl., 120 (2010), 1215-1246.  doi: 10.1016/j.spa.2010.03.009.  Google Scholar

[9]

S. Herrmann and J. Tugaut, Stationary measures for self-stabilizing processes: Asymptotic analysis in the small noise limit, Electron. J. Probab., 15 (2010), 2087-2116.  doi: 10.1214/EJP.v15-842.  Google Scholar

[10]

S. Herrmann and J. Tugaut, Self-stabilizing processes: Uniqueness problem for stationary measures and convergence rate in the small noise limit, ESAIM Probability and statistics, 16 (2012), 277-305.  doi: 10.1051/ps/2011152.  Google Scholar

[11]

M. Kac, Probability and Related Topics in Physical Sciences, With special lectures by G. E. Uhlenbeck, A. R. Hibbs and B. van der Pol. Lectures in Applied Mathematics, Proceedings of the Summer Seminar, Boulder, Colo., 1957, Vol. I Interscience Publishers, London-New York 1959.  Google Scholar

[12]

F. Malrieu, Logarithmic Sobolev inequalities for some nonlinear PDE's, Stochastic Process. Appl., 95 (2001), 109-132.  doi: 10.1016/S0304-4149(01)00095-3.  Google Scholar

[13]

Fl orent Malrieu, Convergence to equilibrium for granular media equations and their Euler schemes, Ann. Appl. Probab., 13 (2003), 540-560.  doi: 10.1214/aoap/1050689593.  Google Scholar

[14]

H. P. McKean. Jr, A class of Markov processes associated with nonlinear parabolic equations, Proc. Nat. Acad. Sci. U.S.A., 56 (1966), 1907-1911.  doi: 10.1073/pnas.56.6.1907.  Google Scholar

[15]

H. P. McKean. Jr, Propagation of chaos for a class of nonlinear parabolic equations, in Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, Catholic Univ., 1967), Air Force Office Sci. Res., Arlington, Va., (1967), 41–57.  Google Scholar

[16]

Yo zo Tamura, On asymptotic behaviors of the solution of a nonlinear diffusion equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 31 (1984), 195-221.   Google Scholar

[17]

J. Tugaut, Convergence to the equilibria for self-stabilizing processes in double-well landscape, Ann. Probab., 41 (2013), 1427-1460.  doi: 10.1214/12-AOP749.  Google Scholar

[18]

J. Tugaut, Self-stabilizing processes in multi-wells landscape in $\mathbb{R}^d$ - Convergence, Stochastic Processes and Their Applications, 123 (2013), 1780-1801.  doi: 10.1016/j.spa.2012.12.003.  Google Scholar

[19]

J. Tugaut, Phase transitions of McKean-Vlasov processes in double-wells landscape, Stochastics, 86 (2014), 257-284.  doi: 10.1080/17442508.2013.775287.  Google Scholar

[20]

J. Tugaut, Self-stabilizing processes in multi-wells landscape in $\mathbb{R}^d$ - Invariant probabilities, J. Theoret. Probab., 27 (2014), 57-79.  doi: 10.1007/s10959-012-0435-2.  Google Scholar

[21]

J. Tugaut, Exit-problem of McKean-Vlasov diffusions in double-well landscape, J. Theoret. Probab., 31 (2018), 1013-1023.  doi: 10.1007/s10959-016-0737-x.  Google Scholar

show all references

References:
[1]

D. BenedettoE. CagliotiJ. A. Carrillo and M. Pulvirenti, A non-Maxwellian steady distribution for one-dimensional granular media, J. Statist. Phys., 91 (1998), 979-990.  doi: 10.1023/A:1023032000560.  Google Scholar

[2]

S. BenachourB. RoynetteD. Talay and P. Vallois, Nonlinear self-stabilizing processes. I. Existence, invariant probability, propagation of chaos, Stochastic Process. Appl., 75 (1998), 173-201.  doi: 10.1016/S0304-4149(98)00018-0.  Google Scholar

[3]

S. BenachourB. Roynette and P. Vallois, Nonlinear self-stabilizing processes. II. Convergence to invariant probability, Stochastic Process. Appl., 75 (1998), 203-224.  doi: 10.1016/S0304-4149(98)00019-2.  Google Scholar

[4]

P. CattiauxA. Guillin and F. Malrieu, Probabilistic approach for granular media equations in the non-uniformly convex case, Probab. Theory Related Fields, 140 (2008), 19-40.  doi: 10.1007/s00440-007-0056-3.  Google Scholar

[5]

J. A. CarrilloR. J. McCann and C. Villani, Kinetic equilibration rates for granular media and related equations: Entropy dissipation and mass transportation estimates, Rev. Mat. Iberoamericana, 19 (2003), 971-1018.  doi: 10.4171/RMI/376.  Google Scholar

[6]

J. A. CarrilloR. J. McCann and C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media, Arch. Ration. Mech. Anal., 179 (2006), 217-263.  doi: 10.1007/s00205-005-0386-1.  Google Scholar

[7]

Samuel HerrmannPeter Imkeller and Dierk Peithmann, Large deviations and a Kramers' type law for self-stabilizing diffusions, Ann. Appl. Probab., 18 (2008), 1379-1423.  doi: 10.1214/07-AAP489.  Google Scholar

[8]

S. Herrmann and J. Tugaut, Non-uniqueness of stationary measures for self-stabilizing processes, Stochastic Process. Appl., 120 (2010), 1215-1246.  doi: 10.1016/j.spa.2010.03.009.  Google Scholar

[9]

S. Herrmann and J. Tugaut, Stationary measures for self-stabilizing processes: Asymptotic analysis in the small noise limit, Electron. J. Probab., 15 (2010), 2087-2116.  doi: 10.1214/EJP.v15-842.  Google Scholar

[10]

S. Herrmann and J. Tugaut, Self-stabilizing processes: Uniqueness problem for stationary measures and convergence rate in the small noise limit, ESAIM Probability and statistics, 16 (2012), 277-305.  doi: 10.1051/ps/2011152.  Google Scholar

[11]

M. Kac, Probability and Related Topics in Physical Sciences, With special lectures by G. E. Uhlenbeck, A. R. Hibbs and B. van der Pol. Lectures in Applied Mathematics, Proceedings of the Summer Seminar, Boulder, Colo., 1957, Vol. I Interscience Publishers, London-New York 1959.  Google Scholar

[12]

F. Malrieu, Logarithmic Sobolev inequalities for some nonlinear PDE's, Stochastic Process. Appl., 95 (2001), 109-132.  doi: 10.1016/S0304-4149(01)00095-3.  Google Scholar

[13]

Fl orent Malrieu, Convergence to equilibrium for granular media equations and their Euler schemes, Ann. Appl. Probab., 13 (2003), 540-560.  doi: 10.1214/aoap/1050689593.  Google Scholar

[14]

H. P. McKean. Jr, A class of Markov processes associated with nonlinear parabolic equations, Proc. Nat. Acad. Sci. U.S.A., 56 (1966), 1907-1911.  doi: 10.1073/pnas.56.6.1907.  Google Scholar

[15]

H. P. McKean. Jr, Propagation of chaos for a class of nonlinear parabolic equations, in Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, Catholic Univ., 1967), Air Force Office Sci. Res., Arlington, Va., (1967), 41–57.  Google Scholar

[16]

Yo zo Tamura, On asymptotic behaviors of the solution of a nonlinear diffusion equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 31 (1984), 195-221.   Google Scholar

[17]

J. Tugaut, Convergence to the equilibria for self-stabilizing processes in double-well landscape, Ann. Probab., 41 (2013), 1427-1460.  doi: 10.1214/12-AOP749.  Google Scholar

[18]

J. Tugaut, Self-stabilizing processes in multi-wells landscape in $\mathbb{R}^d$ - Convergence, Stochastic Processes and Their Applications, 123 (2013), 1780-1801.  doi: 10.1016/j.spa.2012.12.003.  Google Scholar

[19]

J. Tugaut, Phase transitions of McKean-Vlasov processes in double-wells landscape, Stochastics, 86 (2014), 257-284.  doi: 10.1080/17442508.2013.775287.  Google Scholar

[20]

J. Tugaut, Self-stabilizing processes in multi-wells landscape in $\mathbb{R}^d$ - Invariant probabilities, J. Theoret. Probab., 27 (2014), 57-79.  doi: 10.1007/s10959-012-0435-2.  Google Scholar

[21]

J. Tugaut, Exit-problem of McKean-Vlasov diffusions in double-well landscape, J. Theoret. Probab., 31 (2018), 1013-1023.  doi: 10.1007/s10959-016-0737-x.  Google Scholar

[1]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[2]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[3]

Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020289

[4]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[5]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[6]

Yukio Kan-On. On the limiting system in the Shigesada, Kawasaki and Teramoto model with large cross-diffusion rates. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3561-3570. doi: 10.3934/dcds.2020161

[7]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[8]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[9]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[10]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[11]

Yasemin Şengül. Viscoelasticity with limiting strain. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 57-70. doi: 10.3934/dcdss.2020330

[12]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[13]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[14]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[15]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[16]

Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020376

[17]

Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020279

[18]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[19]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[20]

Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (12)
  • HTML views (33)
  • Cited by (0)

Other articles
by authors

[Back to Top]