
- Previous Article
- KRM Home
- This Issue
-
Next Article
Projective integration schemes for hyperbolic moment equations
Mathematical modelling of collagen fibres rearrangement during the tendon healing process
1. | Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom |
2. | Inria-Bordeaux, Team CARDAMOM, Office B426,200 av. de la vieille tour, 33405 Talence Cedex, Bordeaux, France |
3. | Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-656 Warsaw, Poland |
4. | ICM, University of Warsaw, ul. Tyniecka 15/17, 02-630 Warsaw, Poland |
Tendon injuries present a clinical challenge to modern medicine as they heal slowly and rarely is there full restoration to healthy tendon structure and mechanical strength. Moreover, the process of healing is not fully elucidated. To improve understanding of tendon function and the healing process, we propose a new model of collagen fibres rearrangement during tendon healing. The model consists of an integro-differential equation describing the dynamics of collagen fibres distribution. We further reduce the model in a suitable asym-ptotic regime leading to a nonlinear non-local Fokker-Planck type equation for the spatial and orientation distribution of collagen fibre bundles. Due to its simplicity, the reduced model allows for possible parameter estimation based on data. We showcase some of the qualitative properties of this model simulating its long time asymptotic behaviour and the total time for tendon fibres to align in terms of the model parameters. A possible biological interpretation of the numerical experiments performed leads us to the working hypothesis of the importance of tendon cell size in patient recovery.
References:
[1] |
A. R. Akintunde and K. S. Miller,
Evaluation of microstructurally motivated constitutive models to describe age-dependent tendon healing, Biomech Model Mechanobiol., 17 (2018), 793-814.
doi: 10.1007/s10237-017-0993-4. |
[2] |
A. R. Akintunde, K. S. Miller and D. E. Schiavazzi,
Bayesian inference of constitutive model parameters from uncertain uniaxial experiments on murine tendons, J Mech Behav Biomed Mater., 96 (2019), 285-300.
doi: 10.1016/j.jmbbm.2019.04.037. |
[3] |
A. R. Akintunde, D. E. Schiavazzi and K. S. Miller, Mathematical Model of Age-Specific Tendon Healing, Computer Methods, Imaging and Visualization in Biomechanics and Biomedical Engineering, Springer International Publishing, 36 (2020), 288-296.
doi: 10.1007/978-3-030-43195-2_23. |
[4] |
J. Banasiak and M. Lachowicz, Kinetic Model of Alignment, Methods of Small Parameter in Mathematical Biology, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, 2014.
doi: 10.1007/978-3-319-05140-6. |
[5] |
P. K. Beredjiklian,
Biologic Aspects of Flexor Tendon Laceration and Repair, J Bone Joint Surg Am., 85 (2003), 539-550.
doi: 10.2106/00004623-200303000-00025. |
[6] |
R. B. Bird, Ch. F. Curtiss, R. C. Armstrong and O. Hassager, Dynamics of polymeric liquids, Volume 1: Fluid mechanics, Wiley, (1987). Google Scholar |
[7] |
R. B. Bird, Ch. F. Curtiss, R. C. Armstrong and O. Hassager, Dynamics of polymeric liquids, Volume 2: Kinetic Theory, Wiley, (1987). Google Scholar |
[8] |
J. A. Carrillo, S. Cordier and G. Toscani,
Over-populated tails for conservative-in-the-mean inelastic Maxwell models, Discrete Contin. Dyn. Syst. A., 24 (2009), 59-81.
doi: 10.3934/dcds.2009.24.59. |
[9] |
J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani,
Asymptotic flocking dynamics for the kinetic Cucker-Smale model,, SIAM J. Math. Anal., 42 (2010), 218-236.
doi: 10.1137/090757290. |
[10] |
J. A. Carrillo and B. Yan,
An asymptotic preserving scheme for the diffusive limit of kinetic systems for chemotaxis, Multiscale Model. Simul., 11 (2013), 336-361.
doi: 10.1137/110851687. |
[11] |
J. A. Carrillo, A. Chertock and Y. Huang,
A finite-volume method for nonlinear nonlocal equations with a gradient flow structure, Commun Comput Phys., 17 (2015), 233-258.
doi: 10.4208/cicp.160214.010814a. |
[12] |
J. A. Carrillo, R. Eftimie and F. Hoffmann,
Non-local kinetic and macroscopic models for self-organised animal aggregations, Kinet. Relat. Models., 8 (2015), 413-441.
doi: 10.3934/krm.2015.8.413. |
[13] |
C. Chainais-Hillairet and F. Filbet,
Asymptotic behaviour of a finite-volume scheme for the transient drift-diffusion model, IMA J. Numer. Anal., 27 (2007), 689-716.
doi: 10.1093/imanum/drl045. |
[14] |
A. Chauviere, L. Preziosi and T. Hillen, Modeling the motion of a cell population in the extracellular matrix, Discrete Contin. Dyn. Syst. A., (2007), 250-259. |
[15] |
S. Cordier, L. Pareschi and G. Toscani,
On a kinetic model for a simple market economy, J Stat Phys., 120 (2005), 253-277.
doi: 10.1007/s10955-005-5456-0. |
[16] |
S. L. Curwin, Rehabilitation after tendon injuries, Tendon Injuries, Springer-Verlag, 24 (2005), 242-266.
doi: 10.1007/1-84628-050-8_24. |
[17] |
L. E. Dahners, Growth and development of tendons, Tendon Injuries, Springer-Verlag, 3 (2005), 22-24.
doi: 10.1007/1-84628-050-8_3. |
[18] |
P. Degond and B. Lucquin-Desreux,
The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case, Math. Models Methods Appl. Sci., 2 (1992), 167-182.
doi: 10.1142/S0218202592000119. |
[19] |
P. Degond and S. Motsch,
Continuum limit of self-driven particles with orientation interaction, Math. Models Methods Appl. Sci., 18 (2008), 1193-1215.
doi: 10.1142/S0218202508003005. |
[20] |
D. Docheva, S.A. Müller, M. Majewski and H. E. Evans,
Biologics for tendon repair, Adv. Drug Deliv. Rev., 84 (2015), 222-239.
doi: 10.1016/j.addr.2014.11.015. |
[21] |
M. Doumic, B. Perthame and J. P. Zubelli, Numerical solution of an inverse problem in size-structured population dynamics, Inverse Probl., 25 (2009), 045008, 25 pp.
doi: 10.1088/0266-5611/25/4/045008. |
[22] |
M. Doumic, P. Maia and J. P. Zubelli,
On the calibration of a size-structured population model from experimental data, Acta Biotheor., 58 (2010), 405-413.
doi: 10.1007/s10441-010-9114-9. |
[23] |
M. Doumic, A. Marciniak-Czochra, B. Perthame and J. P. Zubelli,
A structured population model of cell differentiation, SIAM J Appl Math., 71 (2011), 1918-1940.
doi: 10.1137/100816584. |
[24] |
M. Doumic, M. Hoffmann, N. Krell and L. Robert,
Statistical estimation of a growth-fragmentation model observed on a genealogical tree, BERNOULLI, 21 (2015), 1760-1799.
doi: 10.3150/14-BEJ623. |
[25] |
G. Dudziuk, M. Lachowicz, H. Leszczyński and Z. Szymańska,
A simple model of collagen remodeling, Discrete Contin. Dyn. Syst. Ser. B., 24 (2019), 2205-2217.
doi: 10.3934/dcdsb.2019091. |
[26] |
R. Eftimie, G. de Vries and M. A. Lewis,
Complex spatial group patterns result from different animal communication mechanisms, PNAS, 104 (2007), 6974-6979.
doi: 10.1073/pnas.0611483104. |
[27] |
R. C. Fetecau,
Collective behavior of biological aggregations in two dimensions: A nonlocal kinetic model, Math. Modelels Methods Appl. Sci., 21 (2011), 1539-1569.
doi: 10.1142/S0218202511005489. |
[28] |
R. C. Fetecau and R. Eftimie,
An investigation of a nonlocal hyperbolic model for self-organization of biological groups, J. Math. Biol., 61 (2009), 545-579.
doi: 10.1007/s00285-009-0311-6. |
[29] |
G. Furioli, A. Pulvirenti, E. Terraneo and G. Toscani,
Fokker-Planck equations in the modeling of socio-economic phenomena, Math. Models Methods Appl. Sci., 27 (2017), 115-158.
doi: 10.1142/S0218202517400048. |
[30] |
Y. Hyon, J. A. Carrillo, Q. Du and Ch. Liu,
A maximum entropy principle based closure method for macro-micro models of polymeric materials, Kinet. Relat. Models., 1 (2008), 171-184.
doi: 10.3934/krm.2008.1.171. |
[31] |
G. Jull, A. Moore, D. Falla, J. Lewis, C. McCarthy and M. Sterling, Grieve's Modern Musculoskeletal Physiotherapy, 4$^{th}$ ed., Elsevier, 2015. Google Scholar |
[32] |
D. Kader, M. Mosconi, F. Benazzo and N. Maffulli, Achilles tendon rupture, Tendon Injuries, Springer-Verlag, 20 (2005), 187-200.
doi: 10.1007/1-84628-050-8_20. |
[33] |
M. Kjær, Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading, Physiol. Rev, 84 (2004), 649-698. Google Scholar |
[34] |
M. Lachowicz, H. Leszczyński and M. Parisot,
Blow-up and global existence for a kinetic equation of swarm formation, Math. Models Methods Appl. Sci., 27 (2017), 1153-1175.
doi: 10.1142/S0218202517400115. |
[35] |
H. Y. Li and Y. H. Hua, Achilles tendinopathy: Current concepts about the basic science and clinical treatments, Biomed Res Int., 2016 (2016), 6492597, 9 pp.
doi: 10.1155/2016/6492597. |
[36] |
T. W. Lin, L. Cardenas and L. J. Soslowsky,
Biomechanics of tendon injury and repair, J Biomech., 37 (2004), 865-877.
doi: 10.1016/j.jbiomech.2003.11.005. |
[37] |
N. Loy and L. Preziosi,
Modelling physical limits of migration by a kinetic model with non-local sensing, J Math Biol., 80 (2020), 1759-1801.
doi: 10.1007/s00285-020-01479-w. |
[38] |
G. Nourissat, X. Houard, J. Sellam, D. Duprez and F. Berenbaum,
Use of autologous growth factors in aging tendon and chronic tendinopathy, Front. Biosci., E5 (2013), 911-921.
doi: 10.2741/E670. |
[39] |
M. O'Brian, Anatomy of tendon, Tendon Injuries, Springer-Verlag, 1 (2005), 3-13. Google Scholar |
[40] |
H. G. Othmer, S. R. Dunbar and W. Alt,
Models of dispersal in biological systems, J Math Biol., 26 (1988), 263-298.
doi: 10.1007/BF00277392. |
[41] |
H. G. Othmer and T. Hillen,
The diffusion limit of transport equations. II. Chemotaxis equations, SIAM J. Appl. Math., 62 (2002), 1222-1250.
doi: 10.1137/S0036139900382772. |
[42] |
M. Parisot and M. Lachowicz,
A kinetic model for the formation of swarms with nonlinear interactions, Kinet. Relat. Models., 9 (2016), 131-164.
doi: 10.3934/krm.2016.9.131. |
[43] |
P. Sharma and N. Maffulli, Biology of tendon injury: Healing, modeling and remodeling, J Musculoskelet Neuronal Interact., 6 (2006), 181-190. Google Scholar |
[44] |
P. Sharma and N. Maffulli,
Tendinopathy and tendon injury: The future, Disabil Rehabil., 30 (2008), 1733-1745.
doi: 10.1080/09638280701788274. |
[45] |
J. G. Snedeker and J. Foolen,
Tendon injury and repair - A perspective on the basic mechanisms of tendon disease and future clinical therapy, Acta Biomater., 63 (2017), 18-36.
doi: 10.1016/j.actbio.2017.08.032. |
[46] |
B. Perthame and J. P. Zubelli,
On the inverse problem for a size-structured population model, Inverse Probl., 23 (2007), 1037-1052.
doi: 10.1088/0266-5611/23/3/012. |
[47] |
N. Takahashi, P. Tangkawattana, Y. Ootomo, T. Hirose, J. Minaguchi, H. Ueda, M. Yamada and K. Takehana,
Morphometric analysis of growing tenocytes in the superficial digital flexor tendon of piglets, J Vet Med Sci., 79 (2017), 1960-1967.
doi: 10.1292/jvms.17-0436. |
[48] |
C. T. Thorpe and H. R. C. Screen, Tendon structure and composition, Metabolic Influences on Risk for Tendon Disorders, Advances in Experimental Medicine and Biology, Springer, 920 (2016), 3-10.
doi: 10.1007/978-3-319-33943-6_1. |
[49] |
G. Toscani,
The grazing collisions asymptotics of the non-cut-off Kac equation, Esaim Math Model Numer Anal., 32 (1998), 763-772.
doi: 10.1051/m2an/1998320607631. |
[50] |
G. Toscani,
One-dimensional kinetic models of granular flows, Esaim Math Model Numer Anal., 34 (2000), 1277-1291.
doi: 10.1051/m2an:2000127. |
[51] |
G. Toscani,
Kinetic models of opinion formation, Commun. Math. Sci., 4 (2006), 481-496.
doi: 10.4310/CMS.2006.v4.n3.a1. |
[52] |
F. Wu, M. Nerlich and D. Docheva,
Tendon injuries: Basic science and new repair proposals, EFORT Open Rev., 2 (2017), 332-342.
doi: 10.1302/2058-5241.2.160075. |
[53] |
G. Yang, B. B. Rothrauff and R. S. Tuan,
Tendon and ligament regeneration and repair: Clinical relevance and developmental paradigm, Birth Defects Res. C, Embryo Today., 99 (2013), 203-222.
doi: 10.1002/bdrc.21041. |
[54] |
K. A. Young, J. A. Wise, P. DeSaix, D. H. Kruse, B. Poe, E. Johnson, J. E. Johnson, O. Korol, J. Gordon Betts and M. Womble, Anatomy & Physiology, OpenStax, 2013. Google Scholar |
show all references
References:
[1] |
A. R. Akintunde and K. S. Miller,
Evaluation of microstructurally motivated constitutive models to describe age-dependent tendon healing, Biomech Model Mechanobiol., 17 (2018), 793-814.
doi: 10.1007/s10237-017-0993-4. |
[2] |
A. R. Akintunde, K. S. Miller and D. E. Schiavazzi,
Bayesian inference of constitutive model parameters from uncertain uniaxial experiments on murine tendons, J Mech Behav Biomed Mater., 96 (2019), 285-300.
doi: 10.1016/j.jmbbm.2019.04.037. |
[3] |
A. R. Akintunde, D. E. Schiavazzi and K. S. Miller, Mathematical Model of Age-Specific Tendon Healing, Computer Methods, Imaging and Visualization in Biomechanics and Biomedical Engineering, Springer International Publishing, 36 (2020), 288-296.
doi: 10.1007/978-3-030-43195-2_23. |
[4] |
J. Banasiak and M. Lachowicz, Kinetic Model of Alignment, Methods of Small Parameter in Mathematical Biology, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, 2014.
doi: 10.1007/978-3-319-05140-6. |
[5] |
P. K. Beredjiklian,
Biologic Aspects of Flexor Tendon Laceration and Repair, J Bone Joint Surg Am., 85 (2003), 539-550.
doi: 10.2106/00004623-200303000-00025. |
[6] |
R. B. Bird, Ch. F. Curtiss, R. C. Armstrong and O. Hassager, Dynamics of polymeric liquids, Volume 1: Fluid mechanics, Wiley, (1987). Google Scholar |
[7] |
R. B. Bird, Ch. F. Curtiss, R. C. Armstrong and O. Hassager, Dynamics of polymeric liquids, Volume 2: Kinetic Theory, Wiley, (1987). Google Scholar |
[8] |
J. A. Carrillo, S. Cordier and G. Toscani,
Over-populated tails for conservative-in-the-mean inelastic Maxwell models, Discrete Contin. Dyn. Syst. A., 24 (2009), 59-81.
doi: 10.3934/dcds.2009.24.59. |
[9] |
J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani,
Asymptotic flocking dynamics for the kinetic Cucker-Smale model,, SIAM J. Math. Anal., 42 (2010), 218-236.
doi: 10.1137/090757290. |
[10] |
J. A. Carrillo and B. Yan,
An asymptotic preserving scheme for the diffusive limit of kinetic systems for chemotaxis, Multiscale Model. Simul., 11 (2013), 336-361.
doi: 10.1137/110851687. |
[11] |
J. A. Carrillo, A. Chertock and Y. Huang,
A finite-volume method for nonlinear nonlocal equations with a gradient flow structure, Commun Comput Phys., 17 (2015), 233-258.
doi: 10.4208/cicp.160214.010814a. |
[12] |
J. A. Carrillo, R. Eftimie and F. Hoffmann,
Non-local kinetic and macroscopic models for self-organised animal aggregations, Kinet. Relat. Models., 8 (2015), 413-441.
doi: 10.3934/krm.2015.8.413. |
[13] |
C. Chainais-Hillairet and F. Filbet,
Asymptotic behaviour of a finite-volume scheme for the transient drift-diffusion model, IMA J. Numer. Anal., 27 (2007), 689-716.
doi: 10.1093/imanum/drl045. |
[14] |
A. Chauviere, L. Preziosi and T. Hillen, Modeling the motion of a cell population in the extracellular matrix, Discrete Contin. Dyn. Syst. A., (2007), 250-259. |
[15] |
S. Cordier, L. Pareschi and G. Toscani,
On a kinetic model for a simple market economy, J Stat Phys., 120 (2005), 253-277.
doi: 10.1007/s10955-005-5456-0. |
[16] |
S. L. Curwin, Rehabilitation after tendon injuries, Tendon Injuries, Springer-Verlag, 24 (2005), 242-266.
doi: 10.1007/1-84628-050-8_24. |
[17] |
L. E. Dahners, Growth and development of tendons, Tendon Injuries, Springer-Verlag, 3 (2005), 22-24.
doi: 10.1007/1-84628-050-8_3. |
[18] |
P. Degond and B. Lucquin-Desreux,
The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case, Math. Models Methods Appl. Sci., 2 (1992), 167-182.
doi: 10.1142/S0218202592000119. |
[19] |
P. Degond and S. Motsch,
Continuum limit of self-driven particles with orientation interaction, Math. Models Methods Appl. Sci., 18 (2008), 1193-1215.
doi: 10.1142/S0218202508003005. |
[20] |
D. Docheva, S.A. Müller, M. Majewski and H. E. Evans,
Biologics for tendon repair, Adv. Drug Deliv. Rev., 84 (2015), 222-239.
doi: 10.1016/j.addr.2014.11.015. |
[21] |
M. Doumic, B. Perthame and J. P. Zubelli, Numerical solution of an inverse problem in size-structured population dynamics, Inverse Probl., 25 (2009), 045008, 25 pp.
doi: 10.1088/0266-5611/25/4/045008. |
[22] |
M. Doumic, P. Maia and J. P. Zubelli,
On the calibration of a size-structured population model from experimental data, Acta Biotheor., 58 (2010), 405-413.
doi: 10.1007/s10441-010-9114-9. |
[23] |
M. Doumic, A. Marciniak-Czochra, B. Perthame and J. P. Zubelli,
A structured population model of cell differentiation, SIAM J Appl Math., 71 (2011), 1918-1940.
doi: 10.1137/100816584. |
[24] |
M. Doumic, M. Hoffmann, N. Krell and L. Robert,
Statistical estimation of a growth-fragmentation model observed on a genealogical tree, BERNOULLI, 21 (2015), 1760-1799.
doi: 10.3150/14-BEJ623. |
[25] |
G. Dudziuk, M. Lachowicz, H. Leszczyński and Z. Szymańska,
A simple model of collagen remodeling, Discrete Contin. Dyn. Syst. Ser. B., 24 (2019), 2205-2217.
doi: 10.3934/dcdsb.2019091. |
[26] |
R. Eftimie, G. de Vries and M. A. Lewis,
Complex spatial group patterns result from different animal communication mechanisms, PNAS, 104 (2007), 6974-6979.
doi: 10.1073/pnas.0611483104. |
[27] |
R. C. Fetecau,
Collective behavior of biological aggregations in two dimensions: A nonlocal kinetic model, Math. Modelels Methods Appl. Sci., 21 (2011), 1539-1569.
doi: 10.1142/S0218202511005489. |
[28] |
R. C. Fetecau and R. Eftimie,
An investigation of a nonlocal hyperbolic model for self-organization of biological groups, J. Math. Biol., 61 (2009), 545-579.
doi: 10.1007/s00285-009-0311-6. |
[29] |
G. Furioli, A. Pulvirenti, E. Terraneo and G. Toscani,
Fokker-Planck equations in the modeling of socio-economic phenomena, Math. Models Methods Appl. Sci., 27 (2017), 115-158.
doi: 10.1142/S0218202517400048. |
[30] |
Y. Hyon, J. A. Carrillo, Q. Du and Ch. Liu,
A maximum entropy principle based closure method for macro-micro models of polymeric materials, Kinet. Relat. Models., 1 (2008), 171-184.
doi: 10.3934/krm.2008.1.171. |
[31] |
G. Jull, A. Moore, D. Falla, J. Lewis, C. McCarthy and M. Sterling, Grieve's Modern Musculoskeletal Physiotherapy, 4$^{th}$ ed., Elsevier, 2015. Google Scholar |
[32] |
D. Kader, M. Mosconi, F. Benazzo and N. Maffulli, Achilles tendon rupture, Tendon Injuries, Springer-Verlag, 20 (2005), 187-200.
doi: 10.1007/1-84628-050-8_20. |
[33] |
M. Kjær, Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading, Physiol. Rev, 84 (2004), 649-698. Google Scholar |
[34] |
M. Lachowicz, H. Leszczyński and M. Parisot,
Blow-up and global existence for a kinetic equation of swarm formation, Math. Models Methods Appl. Sci., 27 (2017), 1153-1175.
doi: 10.1142/S0218202517400115. |
[35] |
H. Y. Li and Y. H. Hua, Achilles tendinopathy: Current concepts about the basic science and clinical treatments, Biomed Res Int., 2016 (2016), 6492597, 9 pp.
doi: 10.1155/2016/6492597. |
[36] |
T. W. Lin, L. Cardenas and L. J. Soslowsky,
Biomechanics of tendon injury and repair, J Biomech., 37 (2004), 865-877.
doi: 10.1016/j.jbiomech.2003.11.005. |
[37] |
N. Loy and L. Preziosi,
Modelling physical limits of migration by a kinetic model with non-local sensing, J Math Biol., 80 (2020), 1759-1801.
doi: 10.1007/s00285-020-01479-w. |
[38] |
G. Nourissat, X. Houard, J. Sellam, D. Duprez and F. Berenbaum,
Use of autologous growth factors in aging tendon and chronic tendinopathy, Front. Biosci., E5 (2013), 911-921.
doi: 10.2741/E670. |
[39] |
M. O'Brian, Anatomy of tendon, Tendon Injuries, Springer-Verlag, 1 (2005), 3-13. Google Scholar |
[40] |
H. G. Othmer, S. R. Dunbar and W. Alt,
Models of dispersal in biological systems, J Math Biol., 26 (1988), 263-298.
doi: 10.1007/BF00277392. |
[41] |
H. G. Othmer and T. Hillen,
The diffusion limit of transport equations. II. Chemotaxis equations, SIAM J. Appl. Math., 62 (2002), 1222-1250.
doi: 10.1137/S0036139900382772. |
[42] |
M. Parisot and M. Lachowicz,
A kinetic model for the formation of swarms with nonlinear interactions, Kinet. Relat. Models., 9 (2016), 131-164.
doi: 10.3934/krm.2016.9.131. |
[43] |
P. Sharma and N. Maffulli, Biology of tendon injury: Healing, modeling and remodeling, J Musculoskelet Neuronal Interact., 6 (2006), 181-190. Google Scholar |
[44] |
P. Sharma and N. Maffulli,
Tendinopathy and tendon injury: The future, Disabil Rehabil., 30 (2008), 1733-1745.
doi: 10.1080/09638280701788274. |
[45] |
J. G. Snedeker and J. Foolen,
Tendon injury and repair - A perspective on the basic mechanisms of tendon disease and future clinical therapy, Acta Biomater., 63 (2017), 18-36.
doi: 10.1016/j.actbio.2017.08.032. |
[46] |
B. Perthame and J. P. Zubelli,
On the inverse problem for a size-structured population model, Inverse Probl., 23 (2007), 1037-1052.
doi: 10.1088/0266-5611/23/3/012. |
[47] |
N. Takahashi, P. Tangkawattana, Y. Ootomo, T. Hirose, J. Minaguchi, H. Ueda, M. Yamada and K. Takehana,
Morphometric analysis of growing tenocytes in the superficial digital flexor tendon of piglets, J Vet Med Sci., 79 (2017), 1960-1967.
doi: 10.1292/jvms.17-0436. |
[48] |
C. T. Thorpe and H. R. C. Screen, Tendon structure and composition, Metabolic Influences on Risk for Tendon Disorders, Advances in Experimental Medicine and Biology, Springer, 920 (2016), 3-10.
doi: 10.1007/978-3-319-33943-6_1. |
[49] |
G. Toscani,
The grazing collisions asymptotics of the non-cut-off Kac equation, Esaim Math Model Numer Anal., 32 (1998), 763-772.
doi: 10.1051/m2an/1998320607631. |
[50] |
G. Toscani,
One-dimensional kinetic models of granular flows, Esaim Math Model Numer Anal., 34 (2000), 1277-1291.
doi: 10.1051/m2an:2000127. |
[51] |
G. Toscani,
Kinetic models of opinion formation, Commun. Math. Sci., 4 (2006), 481-496.
doi: 10.4310/CMS.2006.v4.n3.a1. |
[52] |
F. Wu, M. Nerlich and D. Docheva,
Tendon injuries: Basic science and new repair proposals, EFORT Open Rev., 2 (2017), 332-342.
doi: 10.1302/2058-5241.2.160075. |
[53] |
G. Yang, B. B. Rothrauff and R. S. Tuan,
Tendon and ligament regeneration and repair: Clinical relevance and developmental paradigm, Birth Defects Res. C, Embryo Today., 99 (2013), 203-222.
doi: 10.1002/bdrc.21041. |
[54] |
K. A. Young, J. A. Wise, P. DeSaix, D. H. Kruse, B. Poe, E. Johnson, J. E. Johnson, O. Korol, J. Gordon Betts and M. Womble, Anatomy & Physiology, OpenStax, 2013. Google Scholar |





[1] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[2] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[3] |
Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192 |
[4] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[5] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[6] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[7] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[8] |
Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181 |
[9] |
Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409 |
[10] |
Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 |
[11] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[12] |
Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161 |
[13] |
Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021008 |
[14] |
Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200 |
[15] |
Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101 |
[16] |
Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427 |
[17] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[18] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[19] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[20] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
2019 Impact Factor: 1.311
Tools
Metrics
Other articles
by authors
[Back to Top]