doi: 10.3934/krm.2021006

Shadow Lagrangian dynamics for superfluidity

1. 

Department of Mathematics, Ruhr-University Bochum, DE-44801 Bochum, Germany

2. 

Department of Mathematics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden

3. 

Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

4. 

Department of Information Technology, Uppsala University, SE-751 05 Uppsala, Sweden

* Corresponding author

Received  June 2020 Revised  December 2020 Published  January 2021

Fund Project: P. Henning acknowledge the support by the Swedish Research Council (grant 2016-03339) and the Göran Gustafsson foundation and A. M. N. Niklasson is most grateful for the hospitality and pleasant environment at the Division of Scientific Computing at the department of Information Technology at Uppsala University, where he stayed during his participation of the development of this work. This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences (FWP LANLE8AN) and by the U.S. Department of Energy through the Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy Contract No. 892333218NCA000001. The manuscript has the LA-UR number 19-32663

Motivated by a similar approach for Born-Oppenheimer molecular dynamics, this paper proposes an extended "shadow" Lagrangian density for quantum states of superfluids. The extended Lagrangian contains an additional field variable that is forced to follow the wave function of the quantum state through a rapidly oscillating extended harmonic oscillator. By considering the adiabatic limit for large frequencies of the harmonic oscillator, we can derive the two equations of motions, a Schrödinger-type equation for the quantum state and a wave equation for the extended field variable. The equations are coupled in a nonlinear way, but each equation individually is linear with respect to the variable that it defines. The computational advantage of this new system is that it can be easily discretized using linear time stepping methods, where we propose to use a Crank-Nicolson-type approach for the Schrödinger equation and an extended leapfrog scheme for the wave equation. Furthermore, the difference between the quantum state and the extended field variable defines a consistency error that should go to zero if the frequency tends to infinity. By coupling the time-step size in our discretization to the frequency of the harmonic oscillator we can extract an easily computable consistency error indicator that can be used to estimate the numerical error without additional costs. The findings are illustrated in numerical experiments.

Citation: Patrick Henning, Anders M. N. Niklasson. Shadow Lagrangian dynamics for superfluidity. Kinetic & Related Models, doi: 10.3934/krm.2021006
References:
[1]

J. Abo-ShaeerC. RamanJ. Vogels and W. Ketterle, Observation of vortex lattices in Bose-Einstein condensates, Science, 292 (2001), 476-479.  doi: 10.1126/science.1060182.  Google Scholar

[2]

A. Aftalion, Vortices in Bose-Einstein Condensates, Progress in Nonlinear Differential Equations and their Applications, 67. Birkhäuser Boston, Inc., Boston, MA, 2006.  Google Scholar

[3]

G. D. AkrivisV. A. Dougalis and O. A. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation, Numer. Math., 59 (1991), 31-53.  doi: 10.1007/BF01385769.  Google Scholar

[4]

R. Altmann, P. Henning and D. Peterseim, The J-method for the Gross-Pitaevskii eigenvalue problem, preprint, arXiv: 1908.00333, (2019). Google Scholar

[5]

X. AntoineW. Bao and C. Besse, Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations, Comput. Phys. Commun., 184 (2013), 2621-2633.  doi: 10.1016/j.cpc.2013.07.012.  Google Scholar

[6]

G. ArielJ. M. Sanz-Serna and R. Tsai, A multiscale technique for finding slow manifolds of stiff mechanical systems, Multiscale Model. Simul., 10 (2012), 1180-1203.  doi: 10.1137/120861461.  Google Scholar

[7]

W. Bao and Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Models, 6 (2013), 1-135.  doi: 10.3934/krm.2013.6.1.  Google Scholar

[8]

W. Bao and Y. Cai, Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation, Math. Comp., 82 (2013), 99-128.  doi: 10.1090/S0025-5718-2012-02617-2.  Google Scholar

[9]

W. Bao and Q. Du, Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow, SIAM J. Sci. Comput., 25 (2004), 1674-1697.  doi: 10.1137/S1064827503422956.  Google Scholar

[10]

W. BaoH. Wang and P. A. Markowich, Ground, symmetric and central vortex states in rotating Bose-Einstein condensates, Commun. Math. Sci., 3 (2005), 57-88.  doi: 10.4310/CMS.2005.v3.n1.a5.  Google Scholar

[11]

C. Besse, A relaxation scheme for the nonlinear Schrödinger equation, SIAM J. Numer. Anal., 42 (2004), 934-952.  doi: 10.1137/S0036142901396521.  Google Scholar

[12]

S. Bose, Plancks Gesetz und Lichtquantenhypothese, Zeitschrift für Physik, 26 (1924), 178-181.  doi: 10.1007/BF01327326.  Google Scholar

[13]

R. Car and M. Parrinello, Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett., 55 (1985), 2471. doi: 10.1103/PhysRevLett.55.2471.  Google Scholar

[14]

F. DalfovoS. GiorginiL. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Reviews of Modern Physics, 71 (1999), 463-512.  doi: 10.1103/RevModPhys.71.463.  Google Scholar

[15]

I. Danaila and P. Kazemi, A new Sobolev gradient method for direct minimization of the Gross-Pitaevskii energy with rotation, SIAM J. Sci. Comput., 32 (2010), 2447-2467.  doi: 10.1137/100782115.  Google Scholar

[16]

A. Einstein, Quantentheorie des einatomigen idealen Gases, Sitzber. Kgl. Preuss. Akad. Wiss., (1924), 261-267. Google Scholar

[17]

D. L. FederA. A. SvidzinskyA. L. Fetter and C. W. Clark, Anomalous modes drive vortex dynamics in confined Bose-Einstein condensates, Phys. Rev. Lett., 86 (2001), 564-567.  doi: 10.1103/PhysRevLett.86.564.  Google Scholar

[18]

A. L. Fetter, Rotating trapped Bose-Einstein condensates, AIP Conference Proceedings, 994 (2008), 98-99.  doi: 10.1063/1.2907762.  Google Scholar

[19]

P. Henning and A. Målqvist, The finite element method for the time-dependent Gross-Pitaevskii equation with angular momentum rotation, SIAM J. Numer. Anal., 55 (2017), 923-952.  doi: 10.1137/15M1009172.  Google Scholar

[20]

P. Henning and D. Peterseim, Crank-Nicolson Galerkin approximations to nonlinear Schrödinger equations with rough potentials, Math. Models Methods Appl. Sci., 27 (2017), 2147-2184.  doi: 10.1142/S0218202517500415.  Google Scholar

[21]

P. Henning and D. Peterseim, Sobolev gradient flow for the Gross-Pitaevskii eigenvalue problem: global convergence and computational efficiency, SIAM J. Numer. Anal., 58 (2020), 1744-1772.  doi: 10.1137/18M1230463.  Google Scholar

[22]

P. Henning and J. Wärnegård, Numerical comparison of mass-conservative schemes for the Gross-Pitaevskii equation, Kinet. Relat. Models, 12 (2019), 1247-1271.  doi: 10.3934/krm.2019048.  Google Scholar

[23]

E. Jarlebring, S. Kvaal and W. Michiels, An inverse iteration method for eigenvalue problems with eigenvector nonlinearities, SIAM J. Sci. Comput., 36 (2014), A1978-A2001. doi: 10.1137/130910014.  Google Scholar

[24]

O. Karakashian and C. Makridakis, A space-time finite element method for the nonlinear Schrödinger equation: The continuous Galerkin method, SIAM J. Numer. Anal., 36 (1999), 1779-1807.  doi: 10.1137/S0036142997330111.  Google Scholar

[25]

E. H. LiebR. Seiringer and J. Yngvason, A rigorous derivation of the Gross-Pitaevskii energy functional for a two-dimensional Bose gas, Comm. Math. Phys., 224 (2001), 17-31.  doi: 10.1007/s002200100533.  Google Scholar

[26]

K. MadisonF. ChevyV. Bretin and J. Dalibard, Stationary states of a rotating Bose-Einstein condensate: Routes to vortex nucleation, Physical Review Letters, 86 (2001), 4443-4446.  doi: 10.1103/PhysRevLett.86.4443.  Google Scholar

[27]

K. MadisonF. ChevyW. Wohlleben and J. Dalibard, Vortex formation in a stirred Bose-Einstein condensate, Physical Review Letters, 84 (2000), 806-809.  doi: 10.1103/PhysRevLett.84.806.  Google Scholar

[28]

M. MatthewsB. AndersonP. HaljanD. HallC. Wieman and E. Cornell, Vortices in a Bose-Einstein condensate, Physical Review Letters, 83 (1999), 2498-2501.  doi: 10.1142/9789812813787_0077.  Google Scholar

[29]

A. M. N. Niklasson, Extended Born-Oppenheimer molecular dynamics, Phys. Rev. Lett., 100 (2008), 123004. doi: 10.1103/PhysRevLett.100.123004.  Google Scholar

[30]

A. M. N. Niklasson, Next generation extended Lagrangian first principles molecular dynamics, J. Chem. Phys., 147 (2017), 054103. doi: 10.1063/1.4985893.  Google Scholar

[31]

A. M. N. Niklasson and M. J. Cawkwell, Generalized extended Lagrangian Born-Oppenheimer molecular dynamics, J. Chem. Phys., 141 (2014), 164123. doi: 10.1063/1.4898803.  Google Scholar

[32]

A. M. N. Niklasson, P. Steneteg, A. Odell, N. Bock, M. Challacombe, C. J. Tymczak, E. Holmstrom, G. Zheng and V. Weber, Extended Lagrangian Born-Oppenheimer molecular dynamics with dissipation, J. Chem. Phys., 130 (2009), 214109. doi: 10.1063/1.3148075.  Google Scholar

[33]

A. M. N. Niklasson, C. J. Tymczak and M. Challacombe, Time-reversible ab initio molecular dynamics, J. Chem. Phys., 126 (2007), 144103. doi: 10.1063/1.2715556.  Google Scholar

[34] L. P. Pitaevskii and S. Stringari, Bose-Einstein Condensation, Oxford University Press, Oxford, 2003.   Google Scholar
[35]

P. Pulay and G. Fogarasi, Fock matrix dynamics, Chem. Phys. Lett., 386 (2004), 272-278.  doi: 10.1016/j.cplett.2004.01.069.  Google Scholar

[36]

D. K. Remler and P. A. Madden, Molecular dynamics without effective potentials via the car-parrinello approach, Mol. Phys., 70 (1990), 921-966.  doi: 10.1080/00268979000101451.  Google Scholar

[37]

J. M. Sanz-Serna, Methods for the numerical solution of the nonlinear Schroedinger equation, Math. Comp., 43 (1984), 21-27.  doi: 10.1090/S0025-5718-1984-0744922-X.  Google Scholar

[38]

J. M. Sanz-Serna, Runge-Kutta schemes for Hamiltonian systems, BIT, 28 (1988), 877-883.  doi: 10.1007/BF01954907.  Google Scholar

[39]

G. Zheng, A. M. N. Niklasson and M. Karplus, Lagrangian formulation with dissipation of Born-Oppenheimer molecular dynamics using the density-functional tight-binding method, J. Chem. Phys., 135 (2011), 044122. doi: 10.1063/1.3605303.  Google Scholar

show all references

References:
[1]

J. Abo-ShaeerC. RamanJ. Vogels and W. Ketterle, Observation of vortex lattices in Bose-Einstein condensates, Science, 292 (2001), 476-479.  doi: 10.1126/science.1060182.  Google Scholar

[2]

A. Aftalion, Vortices in Bose-Einstein Condensates, Progress in Nonlinear Differential Equations and their Applications, 67. Birkhäuser Boston, Inc., Boston, MA, 2006.  Google Scholar

[3]

G. D. AkrivisV. A. Dougalis and O. A. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation, Numer. Math., 59 (1991), 31-53.  doi: 10.1007/BF01385769.  Google Scholar

[4]

R. Altmann, P. Henning and D. Peterseim, The J-method for the Gross-Pitaevskii eigenvalue problem, preprint, arXiv: 1908.00333, (2019). Google Scholar

[5]

X. AntoineW. Bao and C. Besse, Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations, Comput. Phys. Commun., 184 (2013), 2621-2633.  doi: 10.1016/j.cpc.2013.07.012.  Google Scholar

[6]

G. ArielJ. M. Sanz-Serna and R. Tsai, A multiscale technique for finding slow manifolds of stiff mechanical systems, Multiscale Model. Simul., 10 (2012), 1180-1203.  doi: 10.1137/120861461.  Google Scholar

[7]

W. Bao and Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Models, 6 (2013), 1-135.  doi: 10.3934/krm.2013.6.1.  Google Scholar

[8]

W. Bao and Y. Cai, Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation, Math. Comp., 82 (2013), 99-128.  doi: 10.1090/S0025-5718-2012-02617-2.  Google Scholar

[9]

W. Bao and Q. Du, Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow, SIAM J. Sci. Comput., 25 (2004), 1674-1697.  doi: 10.1137/S1064827503422956.  Google Scholar

[10]

W. BaoH. Wang and P. A. Markowich, Ground, symmetric and central vortex states in rotating Bose-Einstein condensates, Commun. Math. Sci., 3 (2005), 57-88.  doi: 10.4310/CMS.2005.v3.n1.a5.  Google Scholar

[11]

C. Besse, A relaxation scheme for the nonlinear Schrödinger equation, SIAM J. Numer. Anal., 42 (2004), 934-952.  doi: 10.1137/S0036142901396521.  Google Scholar

[12]

S. Bose, Plancks Gesetz und Lichtquantenhypothese, Zeitschrift für Physik, 26 (1924), 178-181.  doi: 10.1007/BF01327326.  Google Scholar

[13]

R. Car and M. Parrinello, Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett., 55 (1985), 2471. doi: 10.1103/PhysRevLett.55.2471.  Google Scholar

[14]

F. DalfovoS. GiorginiL. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Reviews of Modern Physics, 71 (1999), 463-512.  doi: 10.1103/RevModPhys.71.463.  Google Scholar

[15]

I. Danaila and P. Kazemi, A new Sobolev gradient method for direct minimization of the Gross-Pitaevskii energy with rotation, SIAM J. Sci. Comput., 32 (2010), 2447-2467.  doi: 10.1137/100782115.  Google Scholar

[16]

A. Einstein, Quantentheorie des einatomigen idealen Gases, Sitzber. Kgl. Preuss. Akad. Wiss., (1924), 261-267. Google Scholar

[17]

D. L. FederA. A. SvidzinskyA. L. Fetter and C. W. Clark, Anomalous modes drive vortex dynamics in confined Bose-Einstein condensates, Phys. Rev. Lett., 86 (2001), 564-567.  doi: 10.1103/PhysRevLett.86.564.  Google Scholar

[18]

A. L. Fetter, Rotating trapped Bose-Einstein condensates, AIP Conference Proceedings, 994 (2008), 98-99.  doi: 10.1063/1.2907762.  Google Scholar

[19]

P. Henning and A. Målqvist, The finite element method for the time-dependent Gross-Pitaevskii equation with angular momentum rotation, SIAM J. Numer. Anal., 55 (2017), 923-952.  doi: 10.1137/15M1009172.  Google Scholar

[20]

P. Henning and D. Peterseim, Crank-Nicolson Galerkin approximations to nonlinear Schrödinger equations with rough potentials, Math. Models Methods Appl. Sci., 27 (2017), 2147-2184.  doi: 10.1142/S0218202517500415.  Google Scholar

[21]

P. Henning and D. Peterseim, Sobolev gradient flow for the Gross-Pitaevskii eigenvalue problem: global convergence and computational efficiency, SIAM J. Numer. Anal., 58 (2020), 1744-1772.  doi: 10.1137/18M1230463.  Google Scholar

[22]

P. Henning and J. Wärnegård, Numerical comparison of mass-conservative schemes for the Gross-Pitaevskii equation, Kinet. Relat. Models, 12 (2019), 1247-1271.  doi: 10.3934/krm.2019048.  Google Scholar

[23]

E. Jarlebring, S. Kvaal and W. Michiels, An inverse iteration method for eigenvalue problems with eigenvector nonlinearities, SIAM J. Sci. Comput., 36 (2014), A1978-A2001. doi: 10.1137/130910014.  Google Scholar

[24]

O. Karakashian and C. Makridakis, A space-time finite element method for the nonlinear Schrödinger equation: The continuous Galerkin method, SIAM J. Numer. Anal., 36 (1999), 1779-1807.  doi: 10.1137/S0036142997330111.  Google Scholar

[25]

E. H. LiebR. Seiringer and J. Yngvason, A rigorous derivation of the Gross-Pitaevskii energy functional for a two-dimensional Bose gas, Comm. Math. Phys., 224 (2001), 17-31.  doi: 10.1007/s002200100533.  Google Scholar

[26]

K. MadisonF. ChevyV. Bretin and J. Dalibard, Stationary states of a rotating Bose-Einstein condensate: Routes to vortex nucleation, Physical Review Letters, 86 (2001), 4443-4446.  doi: 10.1103/PhysRevLett.86.4443.  Google Scholar

[27]

K. MadisonF. ChevyW. Wohlleben and J. Dalibard, Vortex formation in a stirred Bose-Einstein condensate, Physical Review Letters, 84 (2000), 806-809.  doi: 10.1103/PhysRevLett.84.806.  Google Scholar

[28]

M. MatthewsB. AndersonP. HaljanD. HallC. Wieman and E. Cornell, Vortices in a Bose-Einstein condensate, Physical Review Letters, 83 (1999), 2498-2501.  doi: 10.1142/9789812813787_0077.  Google Scholar

[29]

A. M. N. Niklasson, Extended Born-Oppenheimer molecular dynamics, Phys. Rev. Lett., 100 (2008), 123004. doi: 10.1103/PhysRevLett.100.123004.  Google Scholar

[30]

A. M. N. Niklasson, Next generation extended Lagrangian first principles molecular dynamics, J. Chem. Phys., 147 (2017), 054103. doi: 10.1063/1.4985893.  Google Scholar

[31]

A. M. N. Niklasson and M. J. Cawkwell, Generalized extended Lagrangian Born-Oppenheimer molecular dynamics, J. Chem. Phys., 141 (2014), 164123. doi: 10.1063/1.4898803.  Google Scholar

[32]

A. M. N. Niklasson, P. Steneteg, A. Odell, N. Bock, M. Challacombe, C. J. Tymczak, E. Holmstrom, G. Zheng and V. Weber, Extended Lagrangian Born-Oppenheimer molecular dynamics with dissipation, J. Chem. Phys., 130 (2009), 214109. doi: 10.1063/1.3148075.  Google Scholar

[33]

A. M. N. Niklasson, C. J. Tymczak and M. Challacombe, Time-reversible ab initio molecular dynamics, J. Chem. Phys., 126 (2007), 144103. doi: 10.1063/1.2715556.  Google Scholar

[34] L. P. Pitaevskii and S. Stringari, Bose-Einstein Condensation, Oxford University Press, Oxford, 2003.   Google Scholar
[35]

P. Pulay and G. Fogarasi, Fock matrix dynamics, Chem. Phys. Lett., 386 (2004), 272-278.  doi: 10.1016/j.cplett.2004.01.069.  Google Scholar

[36]

D. K. Remler and P. A. Madden, Molecular dynamics without effective potentials via the car-parrinello approach, Mol. Phys., 70 (1990), 921-966.  doi: 10.1080/00268979000101451.  Google Scholar

[37]

J. M. Sanz-Serna, Methods for the numerical solution of the nonlinear Schroedinger equation, Math. Comp., 43 (1984), 21-27.  doi: 10.1090/S0025-5718-1984-0744922-X.  Google Scholar

[38]

J. M. Sanz-Serna, Runge-Kutta schemes for Hamiltonian systems, BIT, 28 (1988), 877-883.  doi: 10.1007/BF01954907.  Google Scholar

[39]

G. Zheng, A. M. N. Niklasson and M. Karplus, Lagrangian formulation with dissipation of Born-Oppenheimer molecular dynamics using the density-functional tight-binding method, J. Chem. Phys., 135 (2011), 044122. doi: 10.1063/1.3605303.  Google Scholar

Figure 1.  Model problem 1. Left: ground state density $ |u_0|^2 $ at $ t = 0 $. Middle: exact density $ |u(t)|^2 $ at time $ t = 2 $ Right: exact density at final computing time $ t = 4 $
Figure 2.  Model Problem 1. Comparison of accuracies for the Dissipative Shadow Lagrangian Method with different dissipation orders $K$. Notably, the accuracies for $K$ = 3, 4, 5, 6 are extremely close to each other
Figure 3.  Model Problem 1. Left: Comparison of the ${H^1}$-errors for DS-K$5$, the classical Crank-Nicolson scheme and the Besserelaxation scheme. Right: comparison of the exact ${H^1}$-error for DS-K$5$ with the estimated error using the consistency indicator $\left|E\left(\psi^{N}\right)-E\left(\phi^{N}\right)\right|$
Figure 4.  Model Problem 1. Results obtained for DS-K$5$ and three different step sizes $\tau $. Left: Variations of the energy E (cf. $(13)$) over time. Right: Variations of the mass $m\left(\psi^{n}\right) = \left\|\psi^{n}\right\|_{L^{2}(U)}$ over time
Figure 5.  Model problem 2. Left: potential $ V_0 $ as given by $(14)$. Middle: ground state density $ |u_0|^2 $, i.e., $ |u(t)|^2 $ at $ t = 0 $. Right: exact density $ |u(t)|^2 $ at final computing time $ t = 1 $
Figure 6.  Model Problem 2. Comparison of the accuracies for DS-K$5$, the classical Crank-Nicolson scheme and the Besse-relaxation scheme. Left: comparison of ${L^2}$-errors. Right: comparison of ${H^1}$- errors with visibly reduced convergence rates
Figure 7.  Model Problem 2. Left: Consistency error $\psi^{N}-\phi^{N}$ in the ${L^2}$- and the ${H^1}$-norm for various step sizes $\tau $. Right: Comparison of the exact ${H^1}$-error for DS-K$5$ with the estimated error using the consistency indicator $\left|E\left(\psi^{N}\right)-E\left(\phi^{N}\right)\right|$
Figure 8.  Model Problem 2. Results obtained for DS-K$5$ and three different step sizes $\tau $. Left: Variations of the energy E (cf. $(15)$) over time. Right: Variations of the mass $m\left(\psi^{n}\right) = \left\|\psi^{n}\right\|_{L^{2}(U)}$ over time
[1]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[2]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[3]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[4]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[5]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[6]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[7]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[8]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[9]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[10]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[11]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[12]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[13]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[14]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[15]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[16]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[17]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[18]

Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186

[19]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[20]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (20)
  • HTML views (46)
  • Cited by (0)

Other articles
by authors

[Back to Top]