
-
Previous Article
Captivity of the solution to the granular media equation
- KRM Home
- This Issue
- Next Article
Shadow Lagrangian dynamics for superfluidity
1. | Department of Mathematics, Ruhr-University Bochum, DE-44801 Bochum, Germany |
2. | Department of Mathematics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden |
3. | Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA |
4. | Department of Information Technology, Uppsala University, SE-751 05 Uppsala, Sweden |
Motivated by a similar approach for Born-Oppenheimer molecular dynamics, this paper proposes an extended "shadow" Lagrangian density for quantum states of superfluids. The extended Lagrangian contains an additional field variable that is forced to follow the wave function of the quantum state through a rapidly oscillating extended harmonic oscillator. By considering the adiabatic limit for large frequencies of the harmonic oscillator, we can derive the two equations of motions, a Schrödinger-type equation for the quantum state and a wave equation for the extended field variable. The equations are coupled in a nonlinear way, but each equation individually is linear with respect to the variable that it defines. The computational advantage of this new system is that it can be easily discretized using linear time stepping methods, where we propose to use a Crank-Nicolson-type approach for the Schrödinger equation and an extended leapfrog scheme for the wave equation. Furthermore, the difference between the quantum state and the extended field variable defines a consistency error that should go to zero if the frequency tends to infinity. By coupling the time-step size in our discretization to the frequency of the harmonic oscillator we can extract an easily computable consistency error indicator that can be used to estimate the numerical error without additional costs. The findings are illustrated in numerical experiments.
References:
[1] |
J. Abo-Shaeer, C. Raman, J. Vogels and W. Ketterle,
Observation of vortex lattices in Bose-Einstein condensates, Science, 292 (2001), 476-479.
doi: 10.1126/science.1060182. |
[2] |
A. Aftalion, Vortices in Bose-Einstein Condensates, Progress in Nonlinear Differential Equations and their Applications, 67. Birkhäuser Boston, Inc., Boston, MA, 2006. |
[3] |
G. D. Akrivis, V. A. Dougalis and O. A. Karakashian,
On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation, Numer. Math., 59 (1991), 31-53.
doi: 10.1007/BF01385769. |
[4] |
R. Altmann, P. Henning and D. Peterseim, The J-method for the Gross-Pitaevskii eigenvalue problem, preprint, arXiv: 1908.00333, (2019). Google Scholar |
[5] |
X. Antoine, W. Bao and C. Besse,
Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations, Comput. Phys. Commun., 184 (2013), 2621-2633.
doi: 10.1016/j.cpc.2013.07.012. |
[6] |
G. Ariel, J. M. Sanz-Serna and R. Tsai,
A multiscale technique for finding slow manifolds of stiff mechanical systems, Multiscale Model. Simul., 10 (2012), 1180-1203.
doi: 10.1137/120861461. |
[7] |
W. Bao and Y. Cai,
Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Models, 6 (2013), 1-135.
doi: 10.3934/krm.2013.6.1. |
[8] |
W. Bao and Y. Cai,
Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation, Math. Comp., 82 (2013), 99-128.
doi: 10.1090/S0025-5718-2012-02617-2. |
[9] |
W. Bao and Q. Du,
Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow, SIAM J. Sci. Comput., 25 (2004), 1674-1697.
doi: 10.1137/S1064827503422956. |
[10] |
W. Bao, H. Wang and P. A. Markowich,
Ground, symmetric and central vortex states in rotating Bose-Einstein condensates, Commun. Math. Sci., 3 (2005), 57-88.
doi: 10.4310/CMS.2005.v3.n1.a5. |
[11] |
C. Besse,
A relaxation scheme for the nonlinear Schrödinger equation, SIAM J. Numer. Anal., 42 (2004), 934-952.
doi: 10.1137/S0036142901396521. |
[12] |
S. Bose,
Plancks Gesetz und Lichtquantenhypothese, Zeitschrift für Physik, 26 (1924), 178-181.
doi: 10.1007/BF01327326. |
[13] |
R. Car and M. Parrinello, Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett., 55 (1985), 2471.
doi: 10.1103/PhysRevLett.55.2471. |
[14] |
F. Dalfovo, S. Giorgini, L. Pitaevskii and S. Stringari,
Theory of Bose-Einstein condensation in trapped gases, Reviews of Modern Physics, 71 (1999), 463-512.
doi: 10.1103/RevModPhys.71.463. |
[15] |
I. Danaila and P. Kazemi,
A new Sobolev gradient method for direct minimization of the Gross-Pitaevskii energy with rotation, SIAM J. Sci. Comput., 32 (2010), 2447-2467.
doi: 10.1137/100782115. |
[16] |
A. Einstein, Quantentheorie des einatomigen idealen Gases, Sitzber. Kgl. Preuss. Akad. Wiss., (1924), 261-267. Google Scholar |
[17] |
D. L. Feder, A. A. Svidzinsky, A. L. Fetter and C. W. Clark,
Anomalous modes drive vortex dynamics in confined Bose-Einstein condensates, Phys. Rev. Lett., 86 (2001), 564-567.
doi: 10.1103/PhysRevLett.86.564. |
[18] |
A. L. Fetter,
Rotating trapped Bose-Einstein condensates, AIP Conference Proceedings, 994 (2008), 98-99.
doi: 10.1063/1.2907762. |
[19] |
P. Henning and A. Målqvist,
The finite element method for the time-dependent Gross-Pitaevskii equation with angular momentum rotation, SIAM J. Numer. Anal., 55 (2017), 923-952.
doi: 10.1137/15M1009172. |
[20] |
P. Henning and D. Peterseim,
Crank-Nicolson Galerkin approximations to nonlinear Schrödinger equations with rough potentials, Math. Models Methods Appl. Sci., 27 (2017), 2147-2184.
doi: 10.1142/S0218202517500415. |
[21] |
P. Henning and D. Peterseim,
Sobolev gradient flow for the Gross-Pitaevskii eigenvalue problem: global convergence and computational efficiency, SIAM J. Numer. Anal., 58 (2020), 1744-1772.
doi: 10.1137/18M1230463. |
[22] |
P. Henning and J. Wärnegård,
Numerical comparison of mass-conservative schemes for the Gross-Pitaevskii equation, Kinet. Relat. Models, 12 (2019), 1247-1271.
doi: 10.3934/krm.2019048. |
[23] |
E. Jarlebring, S. Kvaal and W. Michiels, An inverse iteration method for eigenvalue problems with eigenvector nonlinearities, SIAM J. Sci. Comput., 36 (2014), A1978-A2001.
doi: 10.1137/130910014. |
[24] |
O. Karakashian and C. Makridakis,
A space-time finite element method for the nonlinear Schrödinger equation: The continuous Galerkin method, SIAM J. Numer. Anal., 36 (1999), 1779-1807.
doi: 10.1137/S0036142997330111. |
[25] |
E. H. Lieb, R. Seiringer and J. Yngvason,
A rigorous derivation of the Gross-Pitaevskii energy functional for a two-dimensional Bose gas, Comm. Math. Phys., 224 (2001), 17-31.
doi: 10.1007/s002200100533. |
[26] |
K. Madison, F. Chevy, V. Bretin and J. Dalibard,
Stationary states of a rotating Bose-Einstein condensate: Routes to vortex nucleation, Physical Review Letters, 86 (2001), 4443-4446.
doi: 10.1103/PhysRevLett.86.4443. |
[27] |
K. Madison, F. Chevy, W. Wohlleben and J. Dalibard,
Vortex formation in a stirred Bose-Einstein condensate, Physical Review Letters, 84 (2000), 806-809.
doi: 10.1103/PhysRevLett.84.806. |
[28] |
M. Matthews, B. Anderson, P. Haljan, D. Hall, C. Wieman and E. Cornell,
Vortices in a Bose-Einstein condensate, Physical Review Letters, 83 (1999), 2498-2501.
doi: 10.1142/9789812813787_0077. |
[29] |
A. M. N. Niklasson, Extended Born-Oppenheimer molecular dynamics, Phys. Rev. Lett., 100 (2008), 123004.
doi: 10.1103/PhysRevLett.100.123004. |
[30] |
A. M. N. Niklasson, Next generation extended Lagrangian first principles molecular dynamics, J. Chem. Phys., 147 (2017), 054103.
doi: 10.1063/1.4985893. |
[31] |
A. M. N. Niklasson and M. J. Cawkwell, Generalized extended Lagrangian Born-Oppenheimer molecular dynamics, J. Chem. Phys., 141 (2014), 164123.
doi: 10.1063/1.4898803. |
[32] |
A. M. N. Niklasson, P. Steneteg, A. Odell, N. Bock, M. Challacombe, C. J. Tymczak, E. Holmstrom, G. Zheng and V. Weber, Extended Lagrangian Born-Oppenheimer molecular dynamics with dissipation, J. Chem. Phys., 130 (2009), 214109.
doi: 10.1063/1.3148075. |
[33] |
A. M. N. Niklasson, C. J. Tymczak and M. Challacombe, Time-reversible ab initio molecular dynamics, J. Chem. Phys., 126 (2007), 144103.
doi: 10.1063/1.2715556. |
[34] |
L. P. Pitaevskii and S. Stringari, Bose-Einstein Condensation, Oxford University Press, Oxford, 2003.
![]() |
[35] |
P. Pulay and G. Fogarasi,
Fock matrix dynamics, Chem. Phys. Lett., 386 (2004), 272-278.
doi: 10.1016/j.cplett.2004.01.069. |
[36] |
D. K. Remler and P. A. Madden,
Molecular dynamics without effective potentials via the car-parrinello approach, Mol. Phys., 70 (1990), 921-966.
doi: 10.1080/00268979000101451. |
[37] |
J. M. Sanz-Serna,
Methods for the numerical solution of the nonlinear Schroedinger equation, Math. Comp., 43 (1984), 21-27.
doi: 10.1090/S0025-5718-1984-0744922-X. |
[38] |
J. M. Sanz-Serna,
Runge-Kutta schemes for Hamiltonian systems, BIT, 28 (1988), 877-883.
doi: 10.1007/BF01954907. |
[39] |
G. Zheng, A. M. N. Niklasson and M. Karplus, Lagrangian formulation with dissipation of Born-Oppenheimer molecular dynamics using the density-functional tight-binding method, J. Chem. Phys., 135 (2011), 044122.
doi: 10.1063/1.3605303. |
show all references
References:
[1] |
J. Abo-Shaeer, C. Raman, J. Vogels and W. Ketterle,
Observation of vortex lattices in Bose-Einstein condensates, Science, 292 (2001), 476-479.
doi: 10.1126/science.1060182. |
[2] |
A. Aftalion, Vortices in Bose-Einstein Condensates, Progress in Nonlinear Differential Equations and their Applications, 67. Birkhäuser Boston, Inc., Boston, MA, 2006. |
[3] |
G. D. Akrivis, V. A. Dougalis and O. A. Karakashian,
On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation, Numer. Math., 59 (1991), 31-53.
doi: 10.1007/BF01385769. |
[4] |
R. Altmann, P. Henning and D. Peterseim, The J-method for the Gross-Pitaevskii eigenvalue problem, preprint, arXiv: 1908.00333, (2019). Google Scholar |
[5] |
X. Antoine, W. Bao and C. Besse,
Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations, Comput. Phys. Commun., 184 (2013), 2621-2633.
doi: 10.1016/j.cpc.2013.07.012. |
[6] |
G. Ariel, J. M. Sanz-Serna and R. Tsai,
A multiscale technique for finding slow manifolds of stiff mechanical systems, Multiscale Model. Simul., 10 (2012), 1180-1203.
doi: 10.1137/120861461. |
[7] |
W. Bao and Y. Cai,
Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Models, 6 (2013), 1-135.
doi: 10.3934/krm.2013.6.1. |
[8] |
W. Bao and Y. Cai,
Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation, Math. Comp., 82 (2013), 99-128.
doi: 10.1090/S0025-5718-2012-02617-2. |
[9] |
W. Bao and Q. Du,
Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow, SIAM J. Sci. Comput., 25 (2004), 1674-1697.
doi: 10.1137/S1064827503422956. |
[10] |
W. Bao, H. Wang and P. A. Markowich,
Ground, symmetric and central vortex states in rotating Bose-Einstein condensates, Commun. Math. Sci., 3 (2005), 57-88.
doi: 10.4310/CMS.2005.v3.n1.a5. |
[11] |
C. Besse,
A relaxation scheme for the nonlinear Schrödinger equation, SIAM J. Numer. Anal., 42 (2004), 934-952.
doi: 10.1137/S0036142901396521. |
[12] |
S. Bose,
Plancks Gesetz und Lichtquantenhypothese, Zeitschrift für Physik, 26 (1924), 178-181.
doi: 10.1007/BF01327326. |
[13] |
R. Car and M. Parrinello, Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett., 55 (1985), 2471.
doi: 10.1103/PhysRevLett.55.2471. |
[14] |
F. Dalfovo, S. Giorgini, L. Pitaevskii and S. Stringari,
Theory of Bose-Einstein condensation in trapped gases, Reviews of Modern Physics, 71 (1999), 463-512.
doi: 10.1103/RevModPhys.71.463. |
[15] |
I. Danaila and P. Kazemi,
A new Sobolev gradient method for direct minimization of the Gross-Pitaevskii energy with rotation, SIAM J. Sci. Comput., 32 (2010), 2447-2467.
doi: 10.1137/100782115. |
[16] |
A. Einstein, Quantentheorie des einatomigen idealen Gases, Sitzber. Kgl. Preuss. Akad. Wiss., (1924), 261-267. Google Scholar |
[17] |
D. L. Feder, A. A. Svidzinsky, A. L. Fetter and C. W. Clark,
Anomalous modes drive vortex dynamics in confined Bose-Einstein condensates, Phys. Rev. Lett., 86 (2001), 564-567.
doi: 10.1103/PhysRevLett.86.564. |
[18] |
A. L. Fetter,
Rotating trapped Bose-Einstein condensates, AIP Conference Proceedings, 994 (2008), 98-99.
doi: 10.1063/1.2907762. |
[19] |
P. Henning and A. Målqvist,
The finite element method for the time-dependent Gross-Pitaevskii equation with angular momentum rotation, SIAM J. Numer. Anal., 55 (2017), 923-952.
doi: 10.1137/15M1009172. |
[20] |
P. Henning and D. Peterseim,
Crank-Nicolson Galerkin approximations to nonlinear Schrödinger equations with rough potentials, Math. Models Methods Appl. Sci., 27 (2017), 2147-2184.
doi: 10.1142/S0218202517500415. |
[21] |
P. Henning and D. Peterseim,
Sobolev gradient flow for the Gross-Pitaevskii eigenvalue problem: global convergence and computational efficiency, SIAM J. Numer. Anal., 58 (2020), 1744-1772.
doi: 10.1137/18M1230463. |
[22] |
P. Henning and J. Wärnegård,
Numerical comparison of mass-conservative schemes for the Gross-Pitaevskii equation, Kinet. Relat. Models, 12 (2019), 1247-1271.
doi: 10.3934/krm.2019048. |
[23] |
E. Jarlebring, S. Kvaal and W. Michiels, An inverse iteration method for eigenvalue problems with eigenvector nonlinearities, SIAM J. Sci. Comput., 36 (2014), A1978-A2001.
doi: 10.1137/130910014. |
[24] |
O. Karakashian and C. Makridakis,
A space-time finite element method for the nonlinear Schrödinger equation: The continuous Galerkin method, SIAM J. Numer. Anal., 36 (1999), 1779-1807.
doi: 10.1137/S0036142997330111. |
[25] |
E. H. Lieb, R. Seiringer and J. Yngvason,
A rigorous derivation of the Gross-Pitaevskii energy functional for a two-dimensional Bose gas, Comm. Math. Phys., 224 (2001), 17-31.
doi: 10.1007/s002200100533. |
[26] |
K. Madison, F. Chevy, V. Bretin and J. Dalibard,
Stationary states of a rotating Bose-Einstein condensate: Routes to vortex nucleation, Physical Review Letters, 86 (2001), 4443-4446.
doi: 10.1103/PhysRevLett.86.4443. |
[27] |
K. Madison, F. Chevy, W. Wohlleben and J. Dalibard,
Vortex formation in a stirred Bose-Einstein condensate, Physical Review Letters, 84 (2000), 806-809.
doi: 10.1103/PhysRevLett.84.806. |
[28] |
M. Matthews, B. Anderson, P. Haljan, D. Hall, C. Wieman and E. Cornell,
Vortices in a Bose-Einstein condensate, Physical Review Letters, 83 (1999), 2498-2501.
doi: 10.1142/9789812813787_0077. |
[29] |
A. M. N. Niklasson, Extended Born-Oppenheimer molecular dynamics, Phys. Rev. Lett., 100 (2008), 123004.
doi: 10.1103/PhysRevLett.100.123004. |
[30] |
A. M. N. Niklasson, Next generation extended Lagrangian first principles molecular dynamics, J. Chem. Phys., 147 (2017), 054103.
doi: 10.1063/1.4985893. |
[31] |
A. M. N. Niklasson and M. J. Cawkwell, Generalized extended Lagrangian Born-Oppenheimer molecular dynamics, J. Chem. Phys., 141 (2014), 164123.
doi: 10.1063/1.4898803. |
[32] |
A. M. N. Niklasson, P. Steneteg, A. Odell, N. Bock, M. Challacombe, C. J. Tymczak, E. Holmstrom, G. Zheng and V. Weber, Extended Lagrangian Born-Oppenheimer molecular dynamics with dissipation, J. Chem. Phys., 130 (2009), 214109.
doi: 10.1063/1.3148075. |
[33] |
A. M. N. Niklasson, C. J. Tymczak and M. Challacombe, Time-reversible ab initio molecular dynamics, J. Chem. Phys., 126 (2007), 144103.
doi: 10.1063/1.2715556. |
[34] |
L. P. Pitaevskii and S. Stringari, Bose-Einstein Condensation, Oxford University Press, Oxford, 2003.
![]() |
[35] |
P. Pulay and G. Fogarasi,
Fock matrix dynamics, Chem. Phys. Lett., 386 (2004), 272-278.
doi: 10.1016/j.cplett.2004.01.069. |
[36] |
D. K. Remler and P. A. Madden,
Molecular dynamics without effective potentials via the car-parrinello approach, Mol. Phys., 70 (1990), 921-966.
doi: 10.1080/00268979000101451. |
[37] |
J. M. Sanz-Serna,
Methods for the numerical solution of the nonlinear Schroedinger equation, Math. Comp., 43 (1984), 21-27.
doi: 10.1090/S0025-5718-1984-0744922-X. |
[38] |
J. M. Sanz-Serna,
Runge-Kutta schemes for Hamiltonian systems, BIT, 28 (1988), 877-883.
doi: 10.1007/BF01954907. |
[39] |
G. Zheng, A. M. N. Niklasson and M. Karplus, Lagrangian formulation with dissipation of Born-Oppenheimer molecular dynamics using the density-functional tight-binding method, J. Chem. Phys., 135 (2011), 044122.
doi: 10.1063/1.3605303. |








[1] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[2] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[3] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[4] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[5] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[6] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[7] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[8] |
Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029 |
[9] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[10] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[11] |
Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166 |
[12] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[13] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[14] |
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 |
[15] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[16] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
[17] |
Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565 |
[18] |
Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637 |
[19] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[20] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
2019 Impact Factor: 1.311
Tools
Article outline
Figures and Tables
[Back to Top]