In this article, the existence of mass-conserving solutions is investigated to the continuous coagulation and collisional breakage equation with singular collision kernels. Here, the probability distribution function attains singularity near the origin. The existence result is constructed by using both conservative and non-conservative truncations to the continuous coagulation and collisional breakage equation. The proof of the existence result relies on a classical weak $ L^1 $ compactness method.
Citation: |
[1] |
P. K. Barik, Existence of mass-conserving weak solutions to the singular coagulation equation with multiple fragmentation, Evol. Equ. Control Theory, 9 (2020), 431-446.
doi: 10.3934/eect.2020012.![]() ![]() ![]() |
[2] |
P. K. Barik and A. K. Giri, A note on mass-conserving solutions to the coagulation and fragmentation equation by using non-conservative approximation, Kinet. Relat. Models, 11 (2018), 1125-1138.
doi: 10.3934/krm.2018043.![]() ![]() ![]() |
[3] |
P. K. Barik and A. K. Giri, Existence and uniqueness of weak solutions to the singular kernels coagulation equation with collisional breakage, arXiv: 1806.03911, (2018).
![]() |
[4] |
P. K. Barik and A. K. Giri, Global classical solutions to the continuous coagulation equation with collisional breakage, Z. Angew. Math. Phys., 71 (2020), 1-23.
doi: 10.1007/s00033-020-1261-5.![]() ![]() ![]() |
[5] |
P. K. Barik and A. K. Giri, Weak solutions to the continuous coagulation model with collisional breakage, Discrete Contin. Dyn. Syst., 40 (2020), 6115-6133.
doi: 10.3934/dcds.2020272.![]() ![]() ![]() |
[6] |
P. K. Barik, A. K. Giri and P. Laurençot, Mass-conserving solutions to the Smoluchowski coagulation equation with singular kernel, Proc. Roy. Soc. Edinburgh Sect. A, 150 (2020), 1805-1825.
doi: 10.1017/prm.2018.158.![]() ![]() ![]() |
[7] |
P. S. Brown, Structural stability of the coalescence/breakage equations, J. Atmosph. Sci., 52 (1995), 3857-3865.
![]() |
[8] |
C. C. Camejo and G. Warnecke, The singular kernel coagulation equation with multifragmentation, Math. Methods Appl. Sci., 38 (2015), 2953-2973.
doi: 10.1002/mma.3272.![]() ![]() ![]() |
[9] |
Z. Cheng and S. Redner, Kinetics of fragmentation, J. Phys. A. Math. Gen., 23 (1990), 1233-1258.
doi: 10.1088/0305-4470/23/7/028.![]() ![]() ![]() |
[10] |
Z. Cheng and S. Redner, Scaling theory of fragmentation, Phys. Rev. Lett., 60 (1988), 2450-2453.
doi: 10.1103/PhysRevLett.60.2450.![]() ![]() |
[11] |
M. H. Ernst and I. Pagonabarraga, The nonlinear fragmentation equation, J. Phys. A. Math. Theor., 40 (2007), F331–F337.
doi: 10.1088/1751-8113/40/17/F03.![]() ![]() ![]() |
[12] |
M. Escobedo, P. Laurençot, S. Mischler and B. Perthame, Gelation and mass conservation in coagulation-fragmentation models, J. Differential Equations, 195 (2003), 143-174.
doi: 10.1016/S0022-0396(03)00134-7.![]() ![]() ![]() |
[13] |
F. Filbet and P. Laurençot, Mass-conserving solutions and non-conservative approximation to the Smoluchowski coagulation equation, Arch. Math., 83 (2004), 558-567.
doi: 10.1007/s00013-004-1060-9.![]() ![]() ![]() |
[14] |
A. K. Giri, P. Laurençot and G. Warnecke, Weak solutions to the continuous coagulation with multiple fragmentation, Nonlinear Anal., 75 (2012), 2199-2208.
doi: 10.1016/j.na.2011.10.021.![]() ![]() ![]() |
[15] |
M. Kostoglou and A. J. Karabelas, A study of the nonlinear breakage equation: Analytical and asymptotic solutions, J. Phys. A. Math. Gen., 33 (2000), 1221-1232.
doi: 10.1088/0305-4470/33/6/309.![]() ![]() ![]() |
[16] |
P. Laurençot, Mass-conserving solutions to coagulation-fragmentation equations with nonintegrable fragment distribution function, Quart. Appl. Math., 76 (2018), 767-785.
doi: 10.1090/qam/1511.![]() ![]() ![]() |
[17] |
P. Laurençot, Weak compactness techniques and coagulation equations, Evolutionary Equations with Applications in Natural Sciences, J. Banasiak & M. Mokhtar-Kharroubi (eds.), Lecture Notes Math., 2126 (2015), 199–253.
doi: 10.1007/978-3-319-11322-7_5.![]() ![]() ![]() |
[18] |
P. Laurençot and S. Mischler, From the discrete to the continuous coagulation-fragmentation equations, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 1219-1248.
doi: 10.1017/S0308210502000598.![]() ![]() ![]() |
[19] |
P. Laurençot and D. Wrzosek, The discrete coagulation equations with collisional breakage, J. Statist. Phys., 104 (2001), 193-220.
doi: 10.1023/A:1010309727754.![]() ![]() ![]() |
[20] |
F. Leyvraz and H. R. Tschudi, Singularities in the kinetics of coagulation processes, J. Phys. A, 14 (1981), 3389-3405.
doi: 10.1088/0305-4470/14/12/030.![]() ![]() ![]() |
[21] |
D. J. McLaughlin, W. Lamb and A. C. McBride, An existence and uniqueness result for a coagulation and multiple-fragmentation equation, SIAM J. Math. Anal., 28 (1997), 1173-1190.
doi: 10.1137/S0036141095291713.![]() ![]() ![]() |
[22] |
V. S. Safronov, Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets, Israel Program for Scientific Translations Ltd. Jerusalem, 1972.
![]() |
[23] |
I. W. Stewart, A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels, Math. Methods Appl. Sci., 11 (1989), 627-648.
doi: 10.1002/mma.1670110505.![]() ![]() ![]() |
[24] |
R. D. Vigil, I. Vermeersch and R. O. Fox, Destructive aggregation: aggregation with collision-induced breakage, Colloid and Interface Science, 302 (2006), 149-158.
doi: 10.1016/j.jcis.2006.05.066.![]() ![]() |
[25] |
I. I. Vrabie, Compactness Methods for Nonlinear Evolutions, 2nd edition, Pitman Monogr. Surveys Pure Appl. Math., Longman, 1995.
![]() ![]() |
[26] |
D. Wilkins, A geometrical interpretation of the coagulation equation, J. Phys. A, 15 (1982), 1175-1178.
doi: 10.1088/0305-4470/15/4/020.![]() ![]() ![]() |