doi: 10.3934/krm.2021012

On group symmetries of the hydrodynamic equations for rarefied gas

1. 

Keldysh Institute of Applied Mathematics, Russian Academy of Science, Miusskaya Pl. 4, Moscow, 125047, Russia

2. 

School of Mathematics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand

* Corresponding author: Alexander V. Bobylev

Received  October 2020 Revised  January 2021 Published  February 2021

The invariant group transformations of three-dimensional hydrodynamic equations derived from the Boltzmann equation are studied. Three levels (with respect to the Knudsen number) of hydrodynamic description are considered and compared: (a) Euler equations, (b) Navier-Stokes equations, (c) Generalized Burnett equations (GBEs), which replace the original (ill-posed) Burnett equations. The main attention is paid to group analysis of GBEs in their most general formulation because this and related questions have not been studied before in the literature. The results of group analysis of GBEs and, for comparison, of similar results for Euler and Navier-Stokes equations are presented in two theorems and discussed in detail. It is remarkable that the use of computer code greatly simplifies the proof of the results for GBEs, which are very cumbersome equations with many undetermined parameters.

Citation: Alexander V. Bobylev, Sergey V. Meleshko. On group symmetries of the hydrodynamic equations for rarefied gas. Kinetic & Related Models, doi: 10.3934/krm.2021012
References:
[1]

V. I. Arnol'd, Geometrical Methods in the Theory of Ordinary Differential Equations, Fundamental Principles of Mathematical Science, 250, Springer-Verlag, New York-Berlin, 1983.  Google Scholar

[2]

M. BisiM. P. Cassinari and M. Groppi, Qualitative analysis of the generalized Burnett equations and applications to half-space problems, Kinet. Relat. Models, 1 (2008), 295-312.  doi: 10.3934/krm.2008.1.295.  Google Scholar

[3]

A. V. Bobylev, Generalized Burnett hydrodynamics, J. Stat. Phys., 132 (2008), 569-580.  doi: 10.1007/s10955-008-9556-5.  Google Scholar

[4]

A. V. Bobylev, Instabilities in the Chapman-Enskog expansion and hyperbolic Burnett equations, J. Stat. Phys., 124 (2006), 371-399.  doi: 10.1007/s10955-005-8087-6.  Google Scholar

[5]

A. V. Bobylev, Kinetic Equations. Boltzmann Equation, Maxwell Models, and Hydrodynamics Beyond Navier–Stokes, De Gruyter Series in Applied and Numerical Mathematics, 1, De Gruyter, Berlin/Boston, 2020. doi: 10.1515/9783110550986.  Google Scholar

[6]

A. V. Bobylev, On the Chapman-Enskog and Grad methods for solving the Boltzmann equation, Dokl. Akad. Nauk SSSR, 262 (1982), 71-75.   Google Scholar

[7]

A. V. Bobylev and N. K. Ibragimov, Relationships between the symmetry properties of the equations of gas kinetics and hydrodynamics, Math. Modeling Comput. Experiment, 1 (1993), 291-300.  Google Scholar

[8]

A. V. Bobylev and S. V. Meleshko, Group analysis of the generalized Burnett equations, J. Nonlinear Math. Phys., 27 (2020), 494-508.  doi: 10.1080/14029251.2020.1757238.  Google Scholar

[9]

A. V. Bobylev and Å. Windfäll, Boltzmann equation and hydrodynamics at the Burnett level, Kinet. Relat. Models, 5 (2012), 237-260.  doi: 10.3934/krm.2012.5.237.  Google Scholar

[10]

S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction, and Diffusion in Gases, Cambridge University Press, New York 1960.  Google Scholar

[11]

A. A. Cherevko, Optimal system of subalgebras of the Lie algebra of generators admitted by the system of the gas dynamics equations of a polytropic gas with the state equation $p = f(s)\rho^{5/3}$, preprint of Lavrent'ev Institute of Hydrodynamics, Novosibirsk, 1996, 4–96. Google Scholar

[12]

V. Dorodnitsyn, Applications of Lie Groups to Difference Equations, Differential and Integral Equations and Their Applications, 8, CRC Press, Boca Raton, FL, 2011.  Google Scholar

[13]

Y. N. Grigoriev, N. H. Ibragimov, V. F. Kovalev and S. V. Meleshko, Symmetries of Integro-Differential Equations, Lecture Notes in Physics, 806, Springer, Dordrecht, 2010. doi: 10.1007/978-90-481-3797-8.  Google Scholar

[14]

A. C. Hearn, REDUCE Users Manual, Ver. 3.3, The Rand Corporation CP 78, Santa Monica, 1987. Google Scholar

[15]

N. H. Ibragimov (ed.), CRC Handbook of Lie Group Analysis of Differential Equations, vol. 3, CRC Press, Boca Raton, 1996. Google Scholar

[16]

M. N. Kogan, Rarefied Gas Dynamics, Springer, Boston, MA, 1969. doi: 10.1007/978-1-4899-6381-9.  Google Scholar

[17]

S. V. Meleshko, Methods for Constructing Exact Solutions of Partial Differential Equations, Mathematical and Analytical Techniques with Applications to Engineering, Springer, New York, 2005. doi: 10.1007/b107051.  Google Scholar

[18]

P. J. Olver, Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, 107, Springer-Verlag, New York, 1986. doi: 10.1007/978-1-4684-0274-2.  Google Scholar

[19]

L. V. Ovsiannikov, Group Analysis of Differential Equations, Academic Press, Inc., Harcourt Brace Jovanovich, Publishers, New York-London, 1982. doi: 10.1016/C2013-0-07470-1.  Google Scholar

[20]

L. V. Ovsiannikov, The program 'Submodels'. Gas dynamics, J. Appl. Math. Mech., 58 (1994), 601-627.  doi: 10.1016/0021-8928(94)90137-6.  Google Scholar

show all references

References:
[1]

V. I. Arnol'd, Geometrical Methods in the Theory of Ordinary Differential Equations, Fundamental Principles of Mathematical Science, 250, Springer-Verlag, New York-Berlin, 1983.  Google Scholar

[2]

M. BisiM. P. Cassinari and M. Groppi, Qualitative analysis of the generalized Burnett equations and applications to half-space problems, Kinet. Relat. Models, 1 (2008), 295-312.  doi: 10.3934/krm.2008.1.295.  Google Scholar

[3]

A. V. Bobylev, Generalized Burnett hydrodynamics, J. Stat. Phys., 132 (2008), 569-580.  doi: 10.1007/s10955-008-9556-5.  Google Scholar

[4]

A. V. Bobylev, Instabilities in the Chapman-Enskog expansion and hyperbolic Burnett equations, J. Stat. Phys., 124 (2006), 371-399.  doi: 10.1007/s10955-005-8087-6.  Google Scholar

[5]

A. V. Bobylev, Kinetic Equations. Boltzmann Equation, Maxwell Models, and Hydrodynamics Beyond Navier–Stokes, De Gruyter Series in Applied and Numerical Mathematics, 1, De Gruyter, Berlin/Boston, 2020. doi: 10.1515/9783110550986.  Google Scholar

[6]

A. V. Bobylev, On the Chapman-Enskog and Grad methods for solving the Boltzmann equation, Dokl. Akad. Nauk SSSR, 262 (1982), 71-75.   Google Scholar

[7]

A. V. Bobylev and N. K. Ibragimov, Relationships between the symmetry properties of the equations of gas kinetics and hydrodynamics, Math. Modeling Comput. Experiment, 1 (1993), 291-300.  Google Scholar

[8]

A. V. Bobylev and S. V. Meleshko, Group analysis of the generalized Burnett equations, J. Nonlinear Math. Phys., 27 (2020), 494-508.  doi: 10.1080/14029251.2020.1757238.  Google Scholar

[9]

A. V. Bobylev and Å. Windfäll, Boltzmann equation and hydrodynamics at the Burnett level, Kinet. Relat. Models, 5 (2012), 237-260.  doi: 10.3934/krm.2012.5.237.  Google Scholar

[10]

S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction, and Diffusion in Gases, Cambridge University Press, New York 1960.  Google Scholar

[11]

A. A. Cherevko, Optimal system of subalgebras of the Lie algebra of generators admitted by the system of the gas dynamics equations of a polytropic gas with the state equation $p = f(s)\rho^{5/3}$, preprint of Lavrent'ev Institute of Hydrodynamics, Novosibirsk, 1996, 4–96. Google Scholar

[12]

V. Dorodnitsyn, Applications of Lie Groups to Difference Equations, Differential and Integral Equations and Their Applications, 8, CRC Press, Boca Raton, FL, 2011.  Google Scholar

[13]

Y. N. Grigoriev, N. H. Ibragimov, V. F. Kovalev and S. V. Meleshko, Symmetries of Integro-Differential Equations, Lecture Notes in Physics, 806, Springer, Dordrecht, 2010. doi: 10.1007/978-90-481-3797-8.  Google Scholar

[14]

A. C. Hearn, REDUCE Users Manual, Ver. 3.3, The Rand Corporation CP 78, Santa Monica, 1987. Google Scholar

[15]

N. H. Ibragimov (ed.), CRC Handbook of Lie Group Analysis of Differential Equations, vol. 3, CRC Press, Boca Raton, 1996. Google Scholar

[16]

M. N. Kogan, Rarefied Gas Dynamics, Springer, Boston, MA, 1969. doi: 10.1007/978-1-4899-6381-9.  Google Scholar

[17]

S. V. Meleshko, Methods for Constructing Exact Solutions of Partial Differential Equations, Mathematical and Analytical Techniques with Applications to Engineering, Springer, New York, 2005. doi: 10.1007/b107051.  Google Scholar

[18]

P. J. Olver, Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, 107, Springer-Verlag, New York, 1986. doi: 10.1007/978-1-4684-0274-2.  Google Scholar

[19]

L. V. Ovsiannikov, Group Analysis of Differential Equations, Academic Press, Inc., Harcourt Brace Jovanovich, Publishers, New York-London, 1982. doi: 10.1016/C2013-0-07470-1.  Google Scholar

[20]

L. V. Ovsiannikov, The program 'Submodels'. Gas dynamics, J. Appl. Math. Mech., 58 (1994), 601-627.  doi: 10.1016/0021-8928(94)90137-6.  Google Scholar

[1]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[2]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[3]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[4]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[5]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[6]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[7]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[8]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[9]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[10]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[11]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[12]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[13]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[14]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[15]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[16]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

[17]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[18]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[19]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[20]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

2019 Impact Factor: 1.311

Article outline

[Back to Top]