
-
Previous Article
A model of cultural evolution in the context of strategic conflict
- KRM Home
- This Issue
-
Next Article
On group symmetries of the hydrodynamic equations for rarefied gas
Polytropic gas modelling at kinetic and macroscopic levels
1. | Applied and Computational Mathematics, RWTH Aachen University, Schinkelstr. 2, 52062 Aachen, Germany |
2. | Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia |
3. | Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, 204 E 24th St, Austin TX 78712, USA |
In this paper, we consider the kinetic model of continuous type describing a polyatomic gas in two different settings corresponding to a different choice of the functional space used to define macroscopic quantities. Such a model introduces a single continuous variable supposed to capture all the phenomena related to the more complex structure of a polyatomic molecule. In particular, we provide a direct comparison of these two settings, and show their equivalence after the distribution function is rescaled and the cross section is reformulated. We then focus on the kinetic model for which the rigorous existence and uniqueness result in the space homogeneous case is recently proven. Using the cross section proposed in that analysis together with the maximum entropy principle, we establish macroscopic models of six and fourteen fields. In the case of six moments, we calculate the exact, nonlinear, production term and prove its total agreement with extended thermodynamics. Moreover, for the fourteen moments model, we provide new expressions for relaxation times and transport coefficients in a linearized setting, that yield both matching with the experimental data for dependence of the shear viscosity upon temperature and a satisfactory agreement with the theoretical value of the Prandtl number.
References:
[1] |
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, 55, U.S. Government Printing Office, Washington, D.C., 1964. |
[2] |
T. Arima, A. Mentrelli and T. Ruggeri,
Molecular extended thermodynamics of rarefied polyatomic gases and wave velocities for increasing number of moments, Ann. Physics, 345 (2014), 111-140.
doi: 10.1016/j.aop.2014.03.011. |
[3] |
T. Arima, T. Ruggeri, M. Sugiyama and S. Taniguchi,
Non-linear extended thermodynamics of real gases with 6 fields, Int. J. Non-Lin. Mech., 72 (2015), 6-15.
doi: 10.1016/j.ijnonlinmec.2015.02.005. |
[4] |
T. Arima, T. Ruggeri, M. Sugiyama and S. Taniguchi,
Recent results on nonlinear extended thermodynamics of real gases with six fields Part I: General theory, Ric. Mat., 65 (2016), 263-277.
doi: 10.1007/s11587-016-0283-y. |
[5] |
C. Baranger, M. Bisi, S. Brull and L. Desvillettes,
On the Chapman-Enskog asymptotics for a mixture of monoatomic and polyatomic rarefied gases, Kinet. Relat. Models, 11 (2018), 821-858.
doi: 10.3934/krm.2018033. |
[6] |
M. Bisi, T. Ruggeri and G. Spiga,
Dynamical pressure in a polyatomic gas: Interplay between kinetic theory and extended thermodynamics, Kinet. Relat. Models, 11 (2018), 71-95.
doi: 10.3934/krm.2018004. |
[7] |
C. Borgnakke and P. S. Larsen,
Statistical collision model for Monte Carlo simulation of polyatomic gas mixture, J. Comput. Phys., 18 (1975), 405-420.
doi: 10.1016/0021-9991(75)90094-7. |
[8] |
L. Boudin, B. Grec, M. Pavić-Čolić and F. Salvarani,
A kinetic model for polytropic gases with internal energy, PAMM Proc. Appl. Math. Mech., 13 (2013), 353-354.
doi: 10.1002/pamm.201310172. |
[9] |
J.-F. Bourgat, L. Desvillettes, P. Le Tallec and B. Perthame,
Microreversible collisions for polyatomic gases and Boltzmann's theorem, European J. Mech. B Fluids, 13 (1994), 237-254.
|
[10] |
C. Cercignani, The Boltzmann Equation and Its Applications, Applied Mathematical Sciences, 67, Springer-Verlag, New York, 1988.
doi: 10.1007/978-1-4612-1039-9. |
[11] |
S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, London, 1970.
![]() ![]() |
[12] |
L. Desvillettes, Sur un modèle de type Borgnakke-Larsen conduisant à des lois d'energie non-linéaires en température pour les gaz parfaits polyatomiques, Ann. Fac. Sci. Toulouse Math. (6), 6 (1997), 257-262.
doi: 10.5802/afst.864. |
[13] |
L. Desvillettes, R. Monaco and F. Salvarani,
A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions, Eur. J. Mech. B Fluids, 24 (2005), 219-236.
doi: 10.1016/j.euromechflu.2004.07.004. |
[14] |
W. Dreyer,
Maximisation of the entropy in non-equilibrium, J. Phys. A, 20 (1987), 6505-6517.
doi: 10.1088/0305-4470/20/18/047. |
[15] |
I. M. Gamba and M. Pavić-Čolić, On the Cauchy problem for Boltzmann equation modelling a polyatomic gas, preprint, arXiv: 2005.01017. |
[16] |
V. Giovangigli, Multicomponent Flow Modeling, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 1999.
doi: 10.1007/978-1-4612-1580-6. |
[17] |
H. Grad,
On the kinetic theory of rarefied gases, Comm. Pure Appl. Math., 2 (1949), 331-407.
doi: 10.1002/cpa.3160020403. |
[18] |
M. Groppi and G. Spiga,
Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas, J. Math. Chem., 26 (1999), 197-219.
doi: 10.1023/A:1019194113816. |
[19] |
M. N. Kogan, Rarefied Gas Dynamics, Springer, Boston, MA, 1969.
doi: 10.1007/978-1-4899-6381-9. |
[20] |
S. Kosuge and K. Aoki, Shock-wave structure for a polyatomic gas with large bulk viscosity, Phys. Rev. Fluids, 3 (2018).
doi: 10.1103/PhysRevFluids.3.023401. |
[21] |
S. Kosuge, H.-W. Kuo and K. Aoki,
A kinetic model for a polyatomic gas with temperature-dependent specific heats and its application to shock-wave structure, J. Stat. Phys., 177 (2019), 209-251.
doi: 10.1007/s10955-019-02366-5. |
[22] |
E. W. Lemmon and R. T. Jacobsen,
Viscosity and thermal conductivity equations for nitrogen, oxygen, argon and air, Int. J. Thermophys., 25 (2004), 21-69.
doi: 10.1023/B:IJOT.0000022327.04529.f3. |
[23] |
C. D. Levermore,
Moment closure hierarchies for kinetic theories, J. Statist. Phys., 83 (1996), 1021-1065.
doi: 10.1007/BF02179552. |
[24] |
T. Magin, B. Graille and M. Massot, Kinetic theory derivation of transport equations for gases with internal energy, 42nd AIAA Thermophysics Conference, Honolulu, Hawaii, USA, 2011.
doi: 10.2514/6.2011-4034. |
[25] |
G. C. Maitland and E. B. Smith,
Critical reassessment of viscosities of 11 common gases, J. Chem. Eng. Data, 17 (1972), 150-156.
doi: 10.1021/je60053a015. |
[26] |
I. Müller, T. Ruggeri, Extended Thermodynamics, Springer Tracts in Natural Philosophy, 37, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4684-0447-0. |
[27] |
E. Nagnibeda and E. Kustova, Non-Equilibrium Reacting Gas Flows. Kinetic Theory of Transport and Relaxation Processes, Heat and Mass Transfer, Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-642-01390-4. |
[28] |
M. Pavić, T. Ruggeri and S. Simić,
Maximum entropy principle for rarefied polyatomic gases, Phys. A, 392 (2013), 1302-1317.
doi: 10.1016/j.physa.2012.12.006. |
[29] |
M. Pavić-Čolić, D. Madjarević and S. Simić,
Polyatomic gases with dynamic pressure: Kinetic non-linear closure and the shock structure, Int. J. Non-Lin. Mech., 92 (2017), 160-175.
doi: 10.1016/j.ijnonlinmec.2017.04.008. |
[30] |
M. Pavić-Čolić and S. Simić,
Moment equations for polyatomic gases, Acta Appl. Math., 132 (2014), 469-482.
doi: 10.1007/s10440-014-9928-6. |
[31] |
B. Rahimi and H. Struchtrup,
Macroscopic and kinetic modelling of rarefied polyatomic gases, J. Fluid Mech., 806 (2016), 437-505.
doi: 10.1017/jfm.2016.604. |
[32] |
T. Ruggeri, Maximum entropy principle closure for 14-moment system for a non-polytropic gas, Ric. Mat., (2020).
doi: 10.1007/s11587-020-00510-y. |
[33] |
T. Ruggeri,
Non-linear maximum entropy principle for a polyatomic gas subject to the dynamic pressure, Bull. Inst. Math. Acad. Sin. (N.S.), 11 (2016), 1-22.
|
[34] |
T. Ruggeri and M. Sugiyama, Rational Extended Thermodynamics Beyond the Monatomic Gas, Springer, Cham, 2015.
doi: 10.1007/978-3-319-13341-6. |
[35] |
S. Simić, M. Pavić-Čolić and D. Madjarević,
Non-equilibrium mixtures of gases: Modelling and computation, Riv. Math Univ. Parma (N.S.), 6 (2015), 135-214.
|
[36] |
Y. Sone, Kinetic Theory and Fluid Dynamics, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 2002.
doi: 10.1007/978-1-4612-0061-1. |
[37] |
Y. Sone, Molecular Gas Dynamics. Theory, Techniques, and Applications, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 2007.
doi: 10.1007/978-0-8176-4573-1. |
[38] |
D. Stéphane,
On the Wang Chang-Uhlenbeck equations, Discrete Contin. Dyn. Syst. Ser. B, 3 (2003), 229-253.
doi: 10.3934/dcdsb.2003.3.229. |
[39] |
H. Struchtrup, The Boltzmann equation and its properties, in Macroscopic Transport Equations for Rarefied Gas Flows, Springer, Berlin, Heidelberg, 2005, 27–51.
doi: 10.1007/3-540-32386-4_3. |
[40] |
S. Taniguchi, T. Arima, T. Ruggeri and M. Sugiyama,
Overshoot of the non-equilibrium temperature in the shock wave structure of a rarefied polyatomic gas subject to the dynamic pressure, Int. J. Non-Lin. Mech., 79 (2016), 66-75.
doi: 10.1016/j.ijnonlinmec.2015.11.003. |
[41] |
S. Taniguchi, T. Arima, T. Ruggeri and M. Sugiyama,
Shock wave structure in a rarefied polyatomic gas based on extended thermodynamics, Acta Appl. Math., 132 (2014), 583-593.
doi: 10.1007/s10440-014-9931-y. |
[42] |
S. Taniguchi, T. Arima, T. Ruggeri and M. Sugiyama, Thermodynamic theory of the shock wave structure in a rarefied polyatomic gas: Beyond the Bethe-Teller theory, Phys. Rev. E, 89 (2014).
doi: 10.1103/PhysRevE.89.013025. |
[43] |
C. S. Wang Chang, G. E. Uhlenbeck and J. de Boer, The heat conductivity and viscosity of polyatomic gases, in Studies in Statistical Mechanics, Vol. II, North-Holland, Amsterdam; Interscience, New York, 1964,241–268. |
show all references
References:
[1] |
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, 55, U.S. Government Printing Office, Washington, D.C., 1964. |
[2] |
T. Arima, A. Mentrelli and T. Ruggeri,
Molecular extended thermodynamics of rarefied polyatomic gases and wave velocities for increasing number of moments, Ann. Physics, 345 (2014), 111-140.
doi: 10.1016/j.aop.2014.03.011. |
[3] |
T. Arima, T. Ruggeri, M. Sugiyama and S. Taniguchi,
Non-linear extended thermodynamics of real gases with 6 fields, Int. J. Non-Lin. Mech., 72 (2015), 6-15.
doi: 10.1016/j.ijnonlinmec.2015.02.005. |
[4] |
T. Arima, T. Ruggeri, M. Sugiyama and S. Taniguchi,
Recent results on nonlinear extended thermodynamics of real gases with six fields Part I: General theory, Ric. Mat., 65 (2016), 263-277.
doi: 10.1007/s11587-016-0283-y. |
[5] |
C. Baranger, M. Bisi, S. Brull and L. Desvillettes,
On the Chapman-Enskog asymptotics for a mixture of monoatomic and polyatomic rarefied gases, Kinet. Relat. Models, 11 (2018), 821-858.
doi: 10.3934/krm.2018033. |
[6] |
M. Bisi, T. Ruggeri and G. Spiga,
Dynamical pressure in a polyatomic gas: Interplay between kinetic theory and extended thermodynamics, Kinet. Relat. Models, 11 (2018), 71-95.
doi: 10.3934/krm.2018004. |
[7] |
C. Borgnakke and P. S. Larsen,
Statistical collision model for Monte Carlo simulation of polyatomic gas mixture, J. Comput. Phys., 18 (1975), 405-420.
doi: 10.1016/0021-9991(75)90094-7. |
[8] |
L. Boudin, B. Grec, M. Pavić-Čolić and F. Salvarani,
A kinetic model for polytropic gases with internal energy, PAMM Proc. Appl. Math. Mech., 13 (2013), 353-354.
doi: 10.1002/pamm.201310172. |
[9] |
J.-F. Bourgat, L. Desvillettes, P. Le Tallec and B. Perthame,
Microreversible collisions for polyatomic gases and Boltzmann's theorem, European J. Mech. B Fluids, 13 (1994), 237-254.
|
[10] |
C. Cercignani, The Boltzmann Equation and Its Applications, Applied Mathematical Sciences, 67, Springer-Verlag, New York, 1988.
doi: 10.1007/978-1-4612-1039-9. |
[11] |
S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, London, 1970.
![]() ![]() |
[12] |
L. Desvillettes, Sur un modèle de type Borgnakke-Larsen conduisant à des lois d'energie non-linéaires en température pour les gaz parfaits polyatomiques, Ann. Fac. Sci. Toulouse Math. (6), 6 (1997), 257-262.
doi: 10.5802/afst.864. |
[13] |
L. Desvillettes, R. Monaco and F. Salvarani,
A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions, Eur. J. Mech. B Fluids, 24 (2005), 219-236.
doi: 10.1016/j.euromechflu.2004.07.004. |
[14] |
W. Dreyer,
Maximisation of the entropy in non-equilibrium, J. Phys. A, 20 (1987), 6505-6517.
doi: 10.1088/0305-4470/20/18/047. |
[15] |
I. M. Gamba and M. Pavić-Čolić, On the Cauchy problem for Boltzmann equation modelling a polyatomic gas, preprint, arXiv: 2005.01017. |
[16] |
V. Giovangigli, Multicomponent Flow Modeling, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 1999.
doi: 10.1007/978-1-4612-1580-6. |
[17] |
H. Grad,
On the kinetic theory of rarefied gases, Comm. Pure Appl. Math., 2 (1949), 331-407.
doi: 10.1002/cpa.3160020403. |
[18] |
M. Groppi and G. Spiga,
Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas, J. Math. Chem., 26 (1999), 197-219.
doi: 10.1023/A:1019194113816. |
[19] |
M. N. Kogan, Rarefied Gas Dynamics, Springer, Boston, MA, 1969.
doi: 10.1007/978-1-4899-6381-9. |
[20] |
S. Kosuge and K. Aoki, Shock-wave structure for a polyatomic gas with large bulk viscosity, Phys. Rev. Fluids, 3 (2018).
doi: 10.1103/PhysRevFluids.3.023401. |
[21] |
S. Kosuge, H.-W. Kuo and K. Aoki,
A kinetic model for a polyatomic gas with temperature-dependent specific heats and its application to shock-wave structure, J. Stat. Phys., 177 (2019), 209-251.
doi: 10.1007/s10955-019-02366-5. |
[22] |
E. W. Lemmon and R. T. Jacobsen,
Viscosity and thermal conductivity equations for nitrogen, oxygen, argon and air, Int. J. Thermophys., 25 (2004), 21-69.
doi: 10.1023/B:IJOT.0000022327.04529.f3. |
[23] |
C. D. Levermore,
Moment closure hierarchies for kinetic theories, J. Statist. Phys., 83 (1996), 1021-1065.
doi: 10.1007/BF02179552. |
[24] |
T. Magin, B. Graille and M. Massot, Kinetic theory derivation of transport equations for gases with internal energy, 42nd AIAA Thermophysics Conference, Honolulu, Hawaii, USA, 2011.
doi: 10.2514/6.2011-4034. |
[25] |
G. C. Maitland and E. B. Smith,
Critical reassessment of viscosities of 11 common gases, J. Chem. Eng. Data, 17 (1972), 150-156.
doi: 10.1021/je60053a015. |
[26] |
I. Müller, T. Ruggeri, Extended Thermodynamics, Springer Tracts in Natural Philosophy, 37, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4684-0447-0. |
[27] |
E. Nagnibeda and E. Kustova, Non-Equilibrium Reacting Gas Flows. Kinetic Theory of Transport and Relaxation Processes, Heat and Mass Transfer, Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-642-01390-4. |
[28] |
M. Pavić, T. Ruggeri and S. Simić,
Maximum entropy principle for rarefied polyatomic gases, Phys. A, 392 (2013), 1302-1317.
doi: 10.1016/j.physa.2012.12.006. |
[29] |
M. Pavić-Čolić, D. Madjarević and S. Simić,
Polyatomic gases with dynamic pressure: Kinetic non-linear closure and the shock structure, Int. J. Non-Lin. Mech., 92 (2017), 160-175.
doi: 10.1016/j.ijnonlinmec.2017.04.008. |
[30] |
M. Pavić-Čolić and S. Simić,
Moment equations for polyatomic gases, Acta Appl. Math., 132 (2014), 469-482.
doi: 10.1007/s10440-014-9928-6. |
[31] |
B. Rahimi and H. Struchtrup,
Macroscopic and kinetic modelling of rarefied polyatomic gases, J. Fluid Mech., 806 (2016), 437-505.
doi: 10.1017/jfm.2016.604. |
[32] |
T. Ruggeri, Maximum entropy principle closure for 14-moment system for a non-polytropic gas, Ric. Mat., (2020).
doi: 10.1007/s11587-020-00510-y. |
[33] |
T. Ruggeri,
Non-linear maximum entropy principle for a polyatomic gas subject to the dynamic pressure, Bull. Inst. Math. Acad. Sin. (N.S.), 11 (2016), 1-22.
|
[34] |
T. Ruggeri and M. Sugiyama, Rational Extended Thermodynamics Beyond the Monatomic Gas, Springer, Cham, 2015.
doi: 10.1007/978-3-319-13341-6. |
[35] |
S. Simić, M. Pavić-Čolić and D. Madjarević,
Non-equilibrium mixtures of gases: Modelling and computation, Riv. Math Univ. Parma (N.S.), 6 (2015), 135-214.
|
[36] |
Y. Sone, Kinetic Theory and Fluid Dynamics, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 2002.
doi: 10.1007/978-1-4612-0061-1. |
[37] |
Y. Sone, Molecular Gas Dynamics. Theory, Techniques, and Applications, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 2007.
doi: 10.1007/978-0-8176-4573-1. |
[38] |
D. Stéphane,
On the Wang Chang-Uhlenbeck equations, Discrete Contin. Dyn. Syst. Ser. B, 3 (2003), 229-253.
doi: 10.3934/dcdsb.2003.3.229. |
[39] |
H. Struchtrup, The Boltzmann equation and its properties, in Macroscopic Transport Equations for Rarefied Gas Flows, Springer, Berlin, Heidelberg, 2005, 27–51.
doi: 10.1007/3-540-32386-4_3. |
[40] |
S. Taniguchi, T. Arima, T. Ruggeri and M. Sugiyama,
Overshoot of the non-equilibrium temperature in the shock wave structure of a rarefied polyatomic gas subject to the dynamic pressure, Int. J. Non-Lin. Mech., 79 (2016), 66-75.
doi: 10.1016/j.ijnonlinmec.2015.11.003. |
[41] |
S. Taniguchi, T. Arima, T. Ruggeri and M. Sugiyama,
Shock wave structure in a rarefied polyatomic gas based on extended thermodynamics, Acta Appl. Math., 132 (2014), 583-593.
doi: 10.1007/s10440-014-9931-y. |
[42] |
S. Taniguchi, T. Arima, T. Ruggeri and M. Sugiyama, Thermodynamic theory of the shock wave structure in a rarefied polyatomic gas: Beyond the Bethe-Teller theory, Phys. Rev. E, 89 (2014).
doi: 10.1103/PhysRevE.89.013025. |
[43] |
C. S. Wang Chang, G. E. Uhlenbeck and J. de Boer, The heat conductivity and viscosity of polyatomic gases, in Studies in Statistical Mechanics, Vol. II, North-Holland, Amsterdam; Interscience, New York, 1964,241–268. |


Translation and rotation | Translation, rotation and vibration | ||
Linear molecule | Non-linear molecule | ||
Degrees of freedom | 5 | 6 | $3\mathcal{N}$ |
$\alpha$ | 0 | $\frac{1}{2}$ | $\frac{1}{2}(3 \mathcal{N}-5) $ |
$\text{Pr}$ from (72) | $\frac{14}{19}$ | $\frac{16}{21}$ | $\frac{6\mathcal{N}+4}{6\mathcal{N}+9}$ |
$\gamma$ | $2.153$ | $2.368$ | Table 2 |
Translation and rotation | Translation, rotation and vibration | ||
Linear molecule | Non-linear molecule | ||
Degrees of freedom | 5 | 6 | $3\mathcal{N}$ |
$\alpha$ | 0 | $\frac{1}{2}$ | $\frac{1}{2}(3 \mathcal{N}-5) $ |
$\text{Pr}$ from (72) | $\frac{14}{19}$ | $\frac{16}{21}$ | $\frac{6\mathcal{N}+4}{6\mathcal{N}+9}$ |
$\gamma$ | $2.153$ | $2.368$ | Table 2 |
$\mathcal{N}$ | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
$\gamma$ | 4.063 | 9.469 | 17.262 | 25.801 | 34.705 | 43.835 | 53.123 | 62.526 |
$\mathcal{N}$ | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
$\gamma$ | 4.063 | 9.469 | 17.262 | 25.801 | 34.705 | 43.835 | 53.123 | 62.526 |
Gas | $s$ | $\gamma$ | Pr from (71) | Pr from (72) | Relative error |
H$_2$ | 0.668 | 0.664 | 0.816 | 0.737 | 10.7% |
CO | 0.734 | 0.532 | 0.819 | 0.737 | 11.1% |
N$_2$ | 0.738 | 0.524 | 0.819 | 0.737 | 11.1% |
NO | 0.788 | 0.424 | 0.82 | 0.737 | 11.3% |
O$_2$ | 0.773 | 0.454 | 0.82 | 0.737 | 11.3% |
CO$_2$ | 0.933 | 0.134 | 0.819 | 0.737 | 11.1% |
N$_2$O | 0.943 | 0.114 | 0.819 | 0.737 | 11.1% |
CH$_4$ | 0.836 | 0.328 | 0.849 | 0.762 | 10.3% |
Gas | $s$ | $\gamma$ | Pr from (71) | Pr from (72) | Relative error |
H$_2$ | 0.668 | 0.664 | 0.816 | 0.737 | 10.7% |
CO | 0.734 | 0.532 | 0.819 | 0.737 | 11.1% |
N$_2$ | 0.738 | 0.524 | 0.819 | 0.737 | 11.1% |
NO | 0.788 | 0.424 | 0.82 | 0.737 | 11.3% |
O$_2$ | 0.773 | 0.454 | 0.82 | 0.737 | 11.3% |
CO$_2$ | 0.933 | 0.134 | 0.819 | 0.737 | 11.1% |
N$_2$O | 0.943 | 0.114 | 0.819 | 0.737 | 11.1% |
CH$_4$ | 0.836 | 0.328 | 0.849 | 0.762 | 10.3% |
Gas | $s$ | $\gamma$ | Pr from (71) | Pr from (72) | Relative error |
H$_2$ | 0.688 | 0.624 | 0.847 | 0.762 | 11.2% |
N$_2$ | 0.684 | 0.704 | 0.846 | 0.762 | 11.0% |
CO$_2$ | 0.7 | 0.599 | 0.894 | 0.815 | 9.7% |
CH$_4$ | 0.689 | 0.419 | 0.930 | 0.872 | 6.8% |
Gas | $s$ | $\gamma$ | Pr from (71) | Pr from (72) | Relative error |
H$_2$ | 0.688 | 0.624 | 0.847 | 0.762 | 11.2% |
N$_2$ | 0.684 | 0.704 | 0.846 | 0.762 | 11.0% |
CO$_2$ | 0.7 | 0.599 | 0.894 | 0.815 | 9.7% |
CH$_4$ | 0.689 | 0.419 | 0.930 | 0.872 | 6.8% |
[1] |
Gilberto M. Kremer, Wilson Marques Jr.. Fourteen moment theory for granular gases. Kinetic and Related Models, 2011, 4 (1) : 317-331. doi: 10.3934/krm.2011.4.317 |
[2] |
Shigeru Takata, Hitoshi Funagane, Kazuo Aoki. Fluid modeling for the Knudsen compressor: Case of polyatomic gases. Kinetic and Related Models, 2010, 3 (2) : 353-372. doi: 10.3934/krm.2010.3.353 |
[3] |
B. Anwasia, M. Bisi, F. Salvarani, A. J. Soares. On the Maxwell-Stefan diffusion limit for a reactive mixture of polyatomic gases in non-isothermal setting. Kinetic and Related Models, 2020, 13 (1) : 63-95. doi: 10.3934/krm.2020003 |
[4] |
Céline Baranger, Marzia Bisi, Stéphane Brull, Laurent Desvillettes. On the Chapman-Enskog asymptotics for a mixture of monoatomic and polyatomic rarefied gases. Kinetic and Related Models, 2018, 11 (4) : 821-858. doi: 10.3934/krm.2018033 |
[5] |
Thomas Leroy. Relativistic transfer equations: Comparison principle and convergence to the non-equilibrium regime. Kinetic and Related Models, 2015, 8 (4) : 725-763. doi: 10.3934/krm.2015.8.725 |
[6] |
Andrea Bondesan, Laurent Boudin, Marc Briant, Bérénice Grec. Stability of the spectral gap for the Boltzmann multi-species operator linearized around non-equilibrium maxwell distributions. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2549-2573. doi: 10.3934/cpaa.2020112 |
[7] |
Jacek Polewczak, Ana Jacinta Soares. On modified simple reacting spheres kinetic model for chemically reactive gases. Kinetic and Related Models, 2017, 10 (2) : 513-539. doi: 10.3934/krm.2017020 |
[8] |
Gilberto M. Kremer, Filipe Oliveira, Ana Jacinta Soares. $\mathcal H$-Theorem and trend to equilibrium of chemically reacting mixtures of gases. Kinetic and Related Models, 2009, 2 (2) : 333-343. doi: 10.3934/krm.2009.2.333 |
[9] |
Marzia Bisi, Tommaso Ruggeri, Giampiero Spiga. Dynamical pressure in a polyatomic gas: Interplay between kinetic theory and extended thermodynamics. Kinetic and Related Models, 2018, 11 (1) : 71-95. doi: 10.3934/krm.2018004 |
[10] |
Manuel Torrilhon. H-Theorem for nonlinear regularized 13-moment equations in kinetic gas theory. Kinetic and Related Models, 2012, 5 (1) : 185-201. doi: 10.3934/krm.2012.5.185 |
[11] |
Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361 |
[12] |
Giacomo Dimarco. The moment guided Monte Carlo method for the Boltzmann equation. Kinetic and Related Models, 2013, 6 (2) : 291-315. doi: 10.3934/krm.2013.6.291 |
[13] |
Yulan Xu, Yanping Dou. Large BV solutions to Euler equations in the isothermal self-gravitating gases with damping. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1451-1467. doi: 10.3934/cpaa.2009.8.1451 |
[14] |
Fei Hou, Huicheng Yin. On global axisymmetric solutions to 2D compressible full Euler equations of Chaplygin gases. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1435-1492. doi: 10.3934/dcds.2020083 |
[15] |
Toyohiko Aiki, Joost Hulshof, Nobuyuki Kenmochi, Adrian Muntean. Analysis of non-equilibrium evolution problems: Selected topics in material and life sciences. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : i-iii. doi: 10.3934/dcdss.2014.7.1i |
[16] |
Niclas Bernhoff. Boundary layers for discrete kinetic models: Multicomponent mixtures, polyatomic molecules, bimolecular reactions, and quantum kinetic equations. Kinetic and Related Models, 2017, 10 (4) : 925-955. doi: 10.3934/krm.2017037 |
[17] |
Eugenio Aulisa, Lidia Bloshanskaya, Akif Ibragimov. Well productivity index for compressible fluids and gases. Evolution Equations and Control Theory, 2016, 5 (1) : 1-36. doi: 10.3934/eect.2016.5.1 |
[18] |
Martin Burger. Kinetic equations for processes on co-evolving networks. Kinetic and Related Models, 2022, 15 (2) : 187-212. doi: 10.3934/krm.2021051 |
[19] |
A. V. Bobylev, Vladimir Dorodnitsyn. Symmetries of evolution equations with non-local operators and applications to the Boltzmann equation. Discrete and Continuous Dynamical Systems, 2009, 24 (1) : 35-57. doi: 10.3934/dcds.2009.24.35 |
[20] |
Luisa Arlotti, Bertrand Lods, Mustapha Mokhtar-Kharroubi. Non-autonomous Honesty theory in abstract state spaces with applications to linear kinetic equations. Communications on Pure and Applied Analysis, 2014, 13 (2) : 729-771. doi: 10.3934/cpaa.2014.13.729 |
2020 Impact Factor: 1.432
Tools
Metrics
Other articles
by authors
[Back to Top]