This work concerns the existence of solution of the kinetic spinor Boltzmann equation as well as the asymptotic behavior of such solution when $ \varepsilon \to 0 $, that is when the time relaxation of the spin-flip collisions is very small in comparison to the time relaxation parameter of the collisions with no spin reversal. Due to the lack of regularity of the weak solution, the switching term $ H_\varepsilon\times M_\varepsilon $ is not stable under the weak convergences. Hence we establish new estimates of the solutions in a weighted Sobolev space of order 3.
Citation: |
[1] |
L. Arkeryd, A kinetic equation for spin polarized Fermi systems, Kinet. Relat. Models, 7 (2014), 1-8.
doi: 10.3934/krm.2014.7.1.![]() ![]() ![]() |
[2] |
H. Brezis, Analyse Fonctionnelle. Théorie et Applications, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983.
![]() ![]() |
[3] |
R. El Hajj, Diffusion models for spin transport derived from the spinor Boltzmann equation, Commun. Math. Sci., 12 (2014), 565-592.
doi: 10.4310/CMS.2014.v12.n3.a9.![]() ![]() ![]() |
[4] |
L. C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS Regional Conference Series in Mathematics, 74, American Mathematical Society, Providence, RI, 1990.
doi: 10.1090/cbms/074.![]() ![]() ![]() |
[5] |
G. D. Gaspari, Bloch equation for conduction-electron spin resonance, Phys. Rev., 131 (1966), 215-219.
doi: 10.1103/PhysRev.151.215.![]() ![]() |
[6] |
K. Hamdache and L. Tartar, The appearance of memory effects for a conservative system, Nonlinear Anal., 177 (2018), 532-542.
doi: 10.1016/j.na.2018.04.017.![]() ![]() ![]() |
[7] |
A. Jüngel, C. Negulescu and P. Shpartko, Bounded weak solutions to a matrix drift-diffusion for spin-coherent electron transport in semiconductors, Math. Models Methods Appl. Sci., 25 (2015), 929-958.
doi: 10.1142/S0218202515500232.![]() ![]() ![]() |
[8] |
S. Possanner and C. Negulescu, Diffusion limit of a generalized matrix Boltzmann equation for spin-polarized transport, Kinet. Relat. Models, 4 (2011), 1159-1191.
doi: 10.3934/krm.2011.4.1159.![]() ![]() ![]() |
[9] |
Y. Qi and S. Zhang, Spin diffusion at finite electric and magnetic field, Phys. Rev. B, 67 (2003).
doi: 10.1103/PhysRevB.67.052407.![]() ![]() |
[10] |
H. C. Torrey, Bloch equation with diffusion term, Phys. Rev., 104 (1956), 563-565.
doi: 10.1103/PhysRev.104.563.![]() ![]() |