doi: 10.3934/krm.2021028
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

A second look at the Kurth solution in galactic dynamics

Universität Köln, Institut für Mathematik, Weyertal 86-90, D-50931 Köln, Germany

Received  March 2021 Revised  June 2021 Early access August 2021

The Kurth solution is a particular non-isotropic steady state solution to the gravitational Vlasov-Poisson system. It has the property that by means of a suitable time-dependent transformation it can be turned into a family of time-dependent solutions. Therefore, for a general steady state
$ Q(x, v) = \tilde{Q}(e_Q, \beta) $
, depending upon the particle energy
$ e_Q $
and
$ \beta = \ell^2 = |x\wedge v|^2 $
, the question arises if solutions
$ f $
could be generated that are of the form
$ f(t) = \tilde{Q}\Big(e_Q(R(t), P(t), B(t)), B(t)\Big) $
for suitable functions
$ R $
,
$ P $
and
$ B $
, all depending on
$ (t, r, p_r, \beta) $
for
$ r = |x| $
and
$ p_r = \frac{x\cdot v}{|x|} $
. We are going to show that, under some mild assumptions, basically if
$ R $
and
$ P $
are independent of
$ \beta $
, and if
$ B = \beta $
is constant, then
$ Q $
already has to be the Kurth solution.
This paper is dedicated to the memory of Professor Robert Glassey.
Citation: Markus Kunze. A second look at the Kurth solution in galactic dynamics. Kinetic & Related Models, doi: 10.3934/krm.2021028
References:
[1]

J. BattW. Faltenbacher and E. Horst, Stationary spherically symmetric models in stellar dynamics, Arch. Rational Mech. Anal., 93 (1986), 159-183.  doi: 10.1007/BF00279958.  Google Scholar

[2]

B. GidasW. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.  doi: 10.1007/BF01221125.  Google Scholar

[3]

R. T. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia/PA 1996. doi: 10.1137/1.9781611971477.  Google Scholar

[4]

R. T. Glassey and J. Schaeffer, On symmetric solutions of the relativistic Vlasov-Poisson system, Comm. Math. Phys., 101 (1985), 459-473.  doi: 10.1007/BF01210740.  Google Scholar

[5]

R. Glassey and J. Schaeffer, Time decay for solutions to the linearized Vlasov equation, Transport Theory Statist. Phys., 23 (1994), 411–453. doi: 10.1080/00411459408203873.  Google Scholar

[6]

R. Glassey and J. Schaeffer, The "two and one-half-dimensional" relativistic Vlasov Maxwell system, Comm. Math. Phys., 185 (1997), 257-284.  doi: 10.1007/s002200050090.  Google Scholar

[7]

R. Kurth, A global particular solution to the initial value problem of stellar dynamics, Quart. Appl. Math., 36 (1978/79), 325-329.  doi: 10.1090/qam/508777.  Google Scholar

[8]

D. McDuff and D. Salamon, Introduction to Symplectic Topology, 2nd edition, Oxford University Press, Oxford 1998.  Google Scholar

[9]

J. Moser and E. J. Zehnder, Notes on Dynamical Systems, American Mathematical Society, Providence/RI 2005. doi: 10.1090/cln/012.  Google Scholar

[10]

T. Ramming and G. Rein, Oscillating solutions of the Vlasov-Poisson system–a numerical investigation, Phys. D, 365 (2018), 72-79.  doi: 10.1016/j.physd.2017.10.013.  Google Scholar

[11]

G. Rein, Stability of spherically symmetric steady states in galactic dynamics against general perturbations, Arch. Ration. Mech. Anal., 161 (2002), 27-42.  doi: 10.1007/s002050100167.  Google Scholar

show all references

References:
[1]

J. BattW. Faltenbacher and E. Horst, Stationary spherically symmetric models in stellar dynamics, Arch. Rational Mech. Anal., 93 (1986), 159-183.  doi: 10.1007/BF00279958.  Google Scholar

[2]

B. GidasW. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.  doi: 10.1007/BF01221125.  Google Scholar

[3]

R. T. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia/PA 1996. doi: 10.1137/1.9781611971477.  Google Scholar

[4]

R. T. Glassey and J. Schaeffer, On symmetric solutions of the relativistic Vlasov-Poisson system, Comm. Math. Phys., 101 (1985), 459-473.  doi: 10.1007/BF01210740.  Google Scholar

[5]

R. Glassey and J. Schaeffer, Time decay for solutions to the linearized Vlasov equation, Transport Theory Statist. Phys., 23 (1994), 411–453. doi: 10.1080/00411459408203873.  Google Scholar

[6]

R. Glassey and J. Schaeffer, The "two and one-half-dimensional" relativistic Vlasov Maxwell system, Comm. Math. Phys., 185 (1997), 257-284.  doi: 10.1007/s002200050090.  Google Scholar

[7]

R. Kurth, A global particular solution to the initial value problem of stellar dynamics, Quart. Appl. Math., 36 (1978/79), 325-329.  doi: 10.1090/qam/508777.  Google Scholar

[8]

D. McDuff and D. Salamon, Introduction to Symplectic Topology, 2nd edition, Oxford University Press, Oxford 1998.  Google Scholar

[9]

J. Moser and E. J. Zehnder, Notes on Dynamical Systems, American Mathematical Society, Providence/RI 2005. doi: 10.1090/cln/012.  Google Scholar

[10]

T. Ramming and G. Rein, Oscillating solutions of the Vlasov-Poisson system–a numerical investigation, Phys. D, 365 (2018), 72-79.  doi: 10.1016/j.physd.2017.10.013.  Google Scholar

[11]

G. Rein, Stability of spherically symmetric steady states in galactic dynamics against general perturbations, Arch. Ration. Mech. Anal., 161 (2002), 27-42.  doi: 10.1007/s002050100167.  Google Scholar

[1]

Katherine Zhiyuan Zhang. Focusing solutions of the Vlasov-Poisson system. Kinetic & Related Models, 2019, 12 (6) : 1313-1327. doi: 10.3934/krm.2019051

[2]

Blanca Ayuso, José A. Carrillo, Chi-Wang Shu. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic & Related Models, 2011, 4 (4) : 955-989. doi: 10.3934/krm.2011.4.955

[3]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic & Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129

[4]

Gianluca Crippa, Silvia Ligabue, Chiara Saffirio. Lagrangian solutions to the Vlasov-Poisson system with a point charge. Kinetic & Related Models, 2018, 11 (6) : 1277-1299. doi: 10.3934/krm.2018050

[5]

Zili Chen, Xiuting Li, Xianwen Zhang. The two dimensional Vlasov-Poisson system with steady spatial asymptotics. Kinetic & Related Models, 2017, 10 (4) : 977-1009. doi: 10.3934/krm.2017039

[6]

Meixia Xiao, Xianwen Zhang. On global solutions to the Vlasov-Poisson system with radiation damping. Kinetic & Related Models, 2018, 11 (5) : 1183-1209. doi: 10.3934/krm.2018046

[7]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete & Continuous Dynamical Systems, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[8]

Jack Schaeffer. On time decay for the spherically symmetric Vlasov-Poisson system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021021

[9]

Gerhard Rein, Christopher Straub. On the transport operators arising from linearizing the Vlasov-Poisson or Einstein-Vlasov system about isotropic steady states. Kinetic & Related Models, 2020, 13 (5) : 933-949. doi: 10.3934/krm.2020032

[10]

Hyung Ju Hwang, Jaewoo Jung, Juan J. L. Velázquez. On global existence of classical solutions for the Vlasov-Poisson system in convex bounded domains. Discrete & Continuous Dynamical Systems, 2013, 33 (2) : 723-737. doi: 10.3934/dcds.2013.33.723

[11]

Francis Filbet, Roland Duclous, Bruno Dubroca. Analysis of a high order finite volume scheme for the 1D Vlasov-Poisson system. Discrete & Continuous Dynamical Systems - S, 2012, 5 (2) : 283-305. doi: 10.3934/dcdss.2012.5.283

[12]

Trinh T. Nguyen. Derivative estimates for screened Vlasov-Poisson system around Penrose-stable equilibria. Kinetic & Related Models, 2020, 13 (6) : 1193-1218. doi: 10.3934/krm.2020043

[13]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. Time evolution of a Vlasov-Poisson plasma with magnetic confinement. Kinetic & Related Models, 2012, 5 (4) : 729-742. doi: 10.3934/krm.2012.5.729

[14]

Gang Li, Xianwen Zhang. A Vlasov-Poisson plasma of infinite mass with a point charge. Kinetic & Related Models, 2018, 11 (2) : 303-336. doi: 10.3934/krm.2018015

[15]

Yulia O. Belyaeva, Björn Gebhard, Alexander L. Skubachevskii. A general way to confined stationary Vlasov-Poisson plasma configurations. Kinetic & Related Models, 2021, 14 (2) : 257-282. doi: 10.3934/krm.2021004

[16]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[17]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. A Vlasov-Poisson plasma with unbounded mass and velocities confined in a cylinder by a magnetic mirror. Kinetic & Related Models, 2016, 9 (4) : 657-686. doi: 10.3934/krm.2016011

[18]

Joackim Bernier, Michel Mehrenberger. Long-time behavior of second order linearized Vlasov-Poisson equations near a homogeneous equilibrium. Kinetic & Related Models, 2020, 13 (1) : 129-168. doi: 10.3934/krm.2020005

[19]

Dongming Wei. 1D Vlasov-Poisson equations with electron sheet initial data. Kinetic & Related Models, 2010, 3 (4) : 729-754. doi: 10.3934/krm.2010.3.729

[20]

Mihaï Bostan. Asymptotic behavior for the Vlasov-Poisson equations with strong uniform magnetic field and general initial conditions. Kinetic & Related Models, 2020, 13 (3) : 531-548. doi: 10.3934/krm.2020018

2020 Impact Factor: 1.432

Article outline

[Back to Top]