October  2021, 14(5): 895-928. doi: 10.3934/krm.2021029

BGK models for inert mixtures: Comparison and applications

1. 

Department of Mathematics and Computer Science, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy

2. 

Department of Mathematics and Research Institute of Natural Science, Gyeongsang National University, Jinju-daero 501, 52828 Jinju, Republic of Korea

3. 

Department of Mathematical, Physical and Computer Sciences, University of Parma Parco Area delle Scienze 53/A, I–43124 Parma, Italy

* Corresponding author: Seung Yeon Cho

Received  February 2021 Revised  July 2021 Published  October 2021 Early access  September 2021

Consistent BGK models for inert mixtures are compared, first in their kinetic behavior and then versus the hydrodynamic limits that can be derived in different collision-dominated regimes. The comparison is carried out both analytically and numerically, for the latter using an asymptotic preserving semi-Lagrangian scheme for the BGK models. Application to the plane shock wave in a binary mixture of noble gases is also presented.

Citation: Sebastiano Boscarino, Seung Yeon Cho, Maria Groppi, Giovanni Russo. BGK models for inert mixtures: Comparison and applications. Kinetic & Related Models, 2021, 14 (5) : 895-928. doi: 10.3934/krm.2021029
References:
[1]

A. AimiM. DiligentiM. Groppi and C. Guardasoni, On the numerical solution of a BGK-type model for chemical reactions, Eur. J. Mech. B Fluids, 26 (2007), 455-472.  doi: 10.1016/j.euromechflu.2006.10.001.  Google Scholar

[2]

P. AndriesK. Aoki and B. Perthame, A consistent BGK-type model for gas mixtures, J. Stat. Phys., 106 (2002), 993-1018.  doi: 10.1023/A:1014033703134.  Google Scholar

[3]

P. L. BhatnagarE. P. Gross and K. Krook, A model for collision processes in gases, Phys. Rev., 94 (1954), 511-524.  doi: 10.1103/PhysRev.94.511.  Google Scholar

[4]

M. BisiA. V. BobylevM. Groppi and G. Spiga, Hydrodynamic equations from a BGK model for inert gas mixtures, In: AIP Conference Proceedings, AIP Publishing LLC, 2132 (2019), 130010.  doi: 10.1063/1.5119630.  Google Scholar

[5]

M. BisiM. Groppi and G. Martalò, Macroscopic equations for inert gas mixtures in different hydrodynamic regimes, J. Phys. A: Math. and Theor., 54 (2021), 085201.  doi: 10.1088/1751-8121/abbd1b.  Google Scholar

[6]

M. BisiM. Groppi and G. Martalò, The evaporation-condensation problem for a binary mixture of rarefied gases, Contin. Mech. Thermodyn., 32 (2020), 1109-1126.  doi: 10.1007/s00161-019-00814-x.  Google Scholar

[7]

M. BisiM. Groppi and G. Spiga, Kinetic Bhatnagar-Gross-Krook model for fast reactive mixtures and its hydrodynamic limit, Phys. Rev. E, 81 (2010), 036327.  doi: 10.1103/PhysRevE.81.036327.  Google Scholar

[8]

M. Bisi and G. Spiga, Navier–Stokes hydrodynamic limit of BGK kinetic equations for an inert mixture of polyatomic gases, In: "From Particle Systems to Partial Differential Equations V" (eds. P. Goncalves and A. J. Soares), Springer Proceedings in Mathematics and Statistics, 258 (2018), 13-31.  doi: 10.1007/978-3-319-99689-9_1.  Google Scholar

[9]

A. V. BobylevM. BisiM. GroppiG. Spiga and I. F. Potapenko, A general consistent BGK model for gas mixtures, Kinet. Relat. Models, 11 (2018), 1377-1393.  doi: 10.3934/krm.2018054.  Google Scholar

[10]

S. Boscarino, S. Y. Cho and G. Russo, A local velocity grid conservative semi-Lagrangian schemes for BGK model, preprint, arXiv: 2107.08626. Google Scholar

[11]

S. BoscarinoS.-Y. ChoG. Russo and S.-B. Yun, High order conservative semi-Lagrangian scheme for the BGK model of the Boltzmann equation, Commun. Comput. Phys., 29 (2021), 1-56.  doi: 10.4208/cicp.OA-2020-0050.  Google Scholar

[12]

S. Boscarino, S.-Y. Cho, G. Russo and S.-B. Yun, Convergence estimates of a semi-Lagrangian scheme for the ellipsoidal BGK model for polyatomic molecules, preprint, arXiv: 2003.00215. Google Scholar

[13]

S. Brull and C. Prigent, Local discrete velocity grids for multi-species rarefied flow simulations, Commun. Comput. Phys., 28 (2020), 1274-1304.  doi: 10.4208/cicp.OA-2019-0089.  Google Scholar

[14]

C. Cercignani, The Boltzmann Equation and its Applications, Springer, New York, 1988. doi: 10.1007/978-1-4612-1039-9.  Google Scholar

[15]

S. Y. Cho, S. Boscarino, M. Groppi and G. Russo, Conservative semi-Lagrangian schemes for a general consistent BGK model for inert gas mixtures, preprint, arXiv: 2012.02497. Google Scholar

[16]

S. Y. ChoS. BoscarinoG. Russo and S.-B. Yun, Conservative semi-Lagrangian schemes for kinetic equations Part I: Reconstruction, J. Comput. Phys., 432 (2021), 110159.  doi: 10.1016/j.jcp.2021.110159.  Google Scholar

[17]

S. Y. ChoS. BoscarinoG. Russo and S.-B. Yun, Conservative semi-Lagrangian schemes for kinetic equations Part II: Applications, J. Comput. Phys., 436 (2021), 110281.  doi: 10.1016/j.jcp.2021.110281.  Google Scholar

[18]

C. K. Chu, Kinetic-theoretic description of the formation of a shock wave, Phys. Fluids, 8 (1965), 12-22.  doi: 10.1063/1.1761077.  Google Scholar

[19]

I. CraveroG. PuppoM. Semplice and G. Visconti, CWENO: Uniformly accurate reconstructions for balance laws, Math. Comp., 87 (2018), 1689-1719.  doi: 10.1090/mcom/3273.  Google Scholar

[20]

V. S. Galkin and N. K. Makashev, Kinetic derivation of the gas-dynamic equation for multicomponent mixtures of light and heavy particles, Fluid Dyn., 29 (1994), 140-155.  doi: 10.1007/BF02330636.  Google Scholar

[21]

M. Groppi, S. Rjasanow and G. Spiga, A kinetic relaxation approach to fast reactive mixtures: Shock wave structure, J. Stat. Mech. Theory Exp., 2009 (2009), P10010. doi: 10.1088/1742-5468/2009/10/P10010.  Google Scholar

[22]

M. GroppiG. Russo and G. Stracquadanio, High order semi-Lagrangian methods for the BGK equation, Commun. Math. Sci., 14 (2016), 389-414.  doi: 10.4310/CMS.2016.v14.n2.a4.  Google Scholar

[23]

M. GroppiG. Russo and G. Stracquadanio, Boundary conditions for semi-Lagrangian methods for the BGK model, Commun. Appl. Ind. Math., 7 (2016), 138-164.  doi: 10.1515/caim-2016-0025.  Google Scholar

[24]

M. Groppi, G. Russo and G. Stracquadanio, Semi-Lagrangian approximation of BGK models for inert and reactive gas mixtures, In: "From Particle Systems to Partial Differential Equations V" ((Eds.) P. Gonçalves and A. Soares), Springer Proceedings in Mathematics and Statistics, 258 (2018), 53–80. doi: 10.1007/978-3-319-99689-9_5.  Google Scholar

[25]

M. Groppi and G. Spiga, A Bhatnagar-Gross-Krook-type approach for chemically reacting gas mixtures, Phys. Fluids, 16 (2004), 4273-4284.  doi: 10.1063/1.1808651.  Google Scholar

[26]

J. R. HaackC. D. Hauck and M. S. Murillo, A conservative, entropic multispecies BGK model, J. Stat. Phys., 168 (2017), 826-856.  doi: 10.1007/s10955-017-1824-9.  Google Scholar

[27]

J. KestinK. KnierimE. A. MasonB. NajafiS. T. Ro and M. Waldman, Equilibrium and transport properties of the noble gases and their mixtures at low density, J. Phys. Chem. Ref. Data, 13 (1984), 229-303.  doi: 10.1063/1.555703.  Google Scholar

[28]

C. Klingenberg and M. Pirner, Existence, uniqueness and positivity of solutions for BGK models for mixtures, J. Differential Equations, 264 (2018), 702-727.  doi: 10.1016/j.jde.2017.09.019.  Google Scholar

[29]

C. KlingenbergM. Pirner and G. Puppo, A consistent kinetic model for a two-component mixture with an application to plasma, Kinet. Relat. Models, 10 (2017), 445-465.  doi: 10.3934/krm.2017017.  Google Scholar

[30] M. N. Kogan, Rarefied Gas Dynamics, Plenum Press, New York, 1969.  doi: 10.1007/978-1-4899-6381-9.  Google Scholar
[31]

D. LevyG. Puppo and G. Russo, Central WENO schemes for hyperbolic systems of conservation laws, ESAIM: Math. Model. Numer. Anal., 33 (1999), 547-571.  doi: 10.1051/m2an:1999152.  Google Scholar

[32]

D. Madjarević and S. Simić, Shock structure in helium-argon mixture-a comparison of hyperbolic multi-temperature model with experiment, EPL, 102 (2013), 44002.  doi: 10.1209/0295-5075/102/44002.  Google Scholar

[33]

T. Ruggeri and S. Simić, On the hyperbolic system of a mixture of Eulerian fluids: A comparison between single- and multi-temperature models, Math. Methods Appl. Sci., 30 (2007), 827-849.  doi: 10.1002/mma.813.  Google Scholar

[34]

G. Russo and F. Filbet, Semilagrangian schemes applied to moving boundary problems for the BGK model of rarefied gas dynamics, Kinet. Relat. Models, 2 (2009), 231-250.  doi: 10.3934/krm.2009.2.231.  Google Scholar

[35]

G. RussoP. Santagati and S.-B. Yun, Convergence of a semi-Lagrangian scheme for the BGK model of the Boltzmann equation, SIAM J. Numer. Anal., 50 (2012), 1111-1135.  doi: 10.1137/100800348.  Google Scholar

[36]

G. Russo and S.-B. Yun, Convergence of a semi-Lagrangian scheme for the ellipsoidal BGK model of the Boltzmann equation, SIAM J. Numer. Anal., 56 (2018), 3580-3610.  doi: 10.1137/17M1163360.  Google Scholar

[37]

P. Santagati and G. Russo, A new class of large time step methods for the BGK models of the Boltzmann equation, preprint, arXiv: 1103.5247. Google Scholar

[38]

S. SimićM. Pavic-Colic and D. Madjarević, Non-equilibrium mixtures of gases: Modelling and computation, Riv. di Mat. della Univ. di Parma, 6 (2015), 135-214.   Google Scholar

[39]

J. Vranjes and P. S. Krstic, Collisions, magnetization, and transport coefficients in the lower solar atmosphere, Astron. Astrophys., 554 (2013), A22. doi: 10.1051/0004-6361/201220738.  Google Scholar

show all references

References:
[1]

A. AimiM. DiligentiM. Groppi and C. Guardasoni, On the numerical solution of a BGK-type model for chemical reactions, Eur. J. Mech. B Fluids, 26 (2007), 455-472.  doi: 10.1016/j.euromechflu.2006.10.001.  Google Scholar

[2]

P. AndriesK. Aoki and B. Perthame, A consistent BGK-type model for gas mixtures, J. Stat. Phys., 106 (2002), 993-1018.  doi: 10.1023/A:1014033703134.  Google Scholar

[3]

P. L. BhatnagarE. P. Gross and K. Krook, A model for collision processes in gases, Phys. Rev., 94 (1954), 511-524.  doi: 10.1103/PhysRev.94.511.  Google Scholar

[4]

M. BisiA. V. BobylevM. Groppi and G. Spiga, Hydrodynamic equations from a BGK model for inert gas mixtures, In: AIP Conference Proceedings, AIP Publishing LLC, 2132 (2019), 130010.  doi: 10.1063/1.5119630.  Google Scholar

[5]

M. BisiM. Groppi and G. Martalò, Macroscopic equations for inert gas mixtures in different hydrodynamic regimes, J. Phys. A: Math. and Theor., 54 (2021), 085201.  doi: 10.1088/1751-8121/abbd1b.  Google Scholar

[6]

M. BisiM. Groppi and G. Martalò, The evaporation-condensation problem for a binary mixture of rarefied gases, Contin. Mech. Thermodyn., 32 (2020), 1109-1126.  doi: 10.1007/s00161-019-00814-x.  Google Scholar

[7]

M. BisiM. Groppi and G. Spiga, Kinetic Bhatnagar-Gross-Krook model for fast reactive mixtures and its hydrodynamic limit, Phys. Rev. E, 81 (2010), 036327.  doi: 10.1103/PhysRevE.81.036327.  Google Scholar

[8]

M. Bisi and G. Spiga, Navier–Stokes hydrodynamic limit of BGK kinetic equations for an inert mixture of polyatomic gases, In: "From Particle Systems to Partial Differential Equations V" (eds. P. Goncalves and A. J. Soares), Springer Proceedings in Mathematics and Statistics, 258 (2018), 13-31.  doi: 10.1007/978-3-319-99689-9_1.  Google Scholar

[9]

A. V. BobylevM. BisiM. GroppiG. Spiga and I. F. Potapenko, A general consistent BGK model for gas mixtures, Kinet. Relat. Models, 11 (2018), 1377-1393.  doi: 10.3934/krm.2018054.  Google Scholar

[10]

S. Boscarino, S. Y. Cho and G. Russo, A local velocity grid conservative semi-Lagrangian schemes for BGK model, preprint, arXiv: 2107.08626. Google Scholar

[11]

S. BoscarinoS.-Y. ChoG. Russo and S.-B. Yun, High order conservative semi-Lagrangian scheme for the BGK model of the Boltzmann equation, Commun. Comput. Phys., 29 (2021), 1-56.  doi: 10.4208/cicp.OA-2020-0050.  Google Scholar

[12]

S. Boscarino, S.-Y. Cho, G. Russo and S.-B. Yun, Convergence estimates of a semi-Lagrangian scheme for the ellipsoidal BGK model for polyatomic molecules, preprint, arXiv: 2003.00215. Google Scholar

[13]

S. Brull and C. Prigent, Local discrete velocity grids for multi-species rarefied flow simulations, Commun. Comput. Phys., 28 (2020), 1274-1304.  doi: 10.4208/cicp.OA-2019-0089.  Google Scholar

[14]

C. Cercignani, The Boltzmann Equation and its Applications, Springer, New York, 1988. doi: 10.1007/978-1-4612-1039-9.  Google Scholar

[15]

S. Y. Cho, S. Boscarino, M. Groppi and G. Russo, Conservative semi-Lagrangian schemes for a general consistent BGK model for inert gas mixtures, preprint, arXiv: 2012.02497. Google Scholar

[16]

S. Y. ChoS. BoscarinoG. Russo and S.-B. Yun, Conservative semi-Lagrangian schemes for kinetic equations Part I: Reconstruction, J. Comput. Phys., 432 (2021), 110159.  doi: 10.1016/j.jcp.2021.110159.  Google Scholar

[17]

S. Y. ChoS. BoscarinoG. Russo and S.-B. Yun, Conservative semi-Lagrangian schemes for kinetic equations Part II: Applications, J. Comput. Phys., 436 (2021), 110281.  doi: 10.1016/j.jcp.2021.110281.  Google Scholar

[18]

C. K. Chu, Kinetic-theoretic description of the formation of a shock wave, Phys. Fluids, 8 (1965), 12-22.  doi: 10.1063/1.1761077.  Google Scholar

[19]

I. CraveroG. PuppoM. Semplice and G. Visconti, CWENO: Uniformly accurate reconstructions for balance laws, Math. Comp., 87 (2018), 1689-1719.  doi: 10.1090/mcom/3273.  Google Scholar

[20]

V. S. Galkin and N. K. Makashev, Kinetic derivation of the gas-dynamic equation for multicomponent mixtures of light and heavy particles, Fluid Dyn., 29 (1994), 140-155.  doi: 10.1007/BF02330636.  Google Scholar

[21]

M. Groppi, S. Rjasanow and G. Spiga, A kinetic relaxation approach to fast reactive mixtures: Shock wave structure, J. Stat. Mech. Theory Exp., 2009 (2009), P10010. doi: 10.1088/1742-5468/2009/10/P10010.  Google Scholar

[22]

M. GroppiG. Russo and G. Stracquadanio, High order semi-Lagrangian methods for the BGK equation, Commun. Math. Sci., 14 (2016), 389-414.  doi: 10.4310/CMS.2016.v14.n2.a4.  Google Scholar

[23]

M. GroppiG. Russo and G. Stracquadanio, Boundary conditions for semi-Lagrangian methods for the BGK model, Commun. Appl. Ind. Math., 7 (2016), 138-164.  doi: 10.1515/caim-2016-0025.  Google Scholar

[24]

M. Groppi, G. Russo and G. Stracquadanio, Semi-Lagrangian approximation of BGK models for inert and reactive gas mixtures, In: "From Particle Systems to Partial Differential Equations V" ((Eds.) P. Gonçalves and A. Soares), Springer Proceedings in Mathematics and Statistics, 258 (2018), 53–80. doi: 10.1007/978-3-319-99689-9_5.  Google Scholar

[25]

M. Groppi and G. Spiga, A Bhatnagar-Gross-Krook-type approach for chemically reacting gas mixtures, Phys. Fluids, 16 (2004), 4273-4284.  doi: 10.1063/1.1808651.  Google Scholar

[26]

J. R. HaackC. D. Hauck and M. S. Murillo, A conservative, entropic multispecies BGK model, J. Stat. Phys., 168 (2017), 826-856.  doi: 10.1007/s10955-017-1824-9.  Google Scholar

[27]

J. KestinK. KnierimE. A. MasonB. NajafiS. T. Ro and M. Waldman, Equilibrium and transport properties of the noble gases and their mixtures at low density, J. Phys. Chem. Ref. Data, 13 (1984), 229-303.  doi: 10.1063/1.555703.  Google Scholar

[28]

C. Klingenberg and M. Pirner, Existence, uniqueness and positivity of solutions for BGK models for mixtures, J. Differential Equations, 264 (2018), 702-727.  doi: 10.1016/j.jde.2017.09.019.  Google Scholar

[29]

C. KlingenbergM. Pirner and G. Puppo, A consistent kinetic model for a two-component mixture with an application to plasma, Kinet. Relat. Models, 10 (2017), 445-465.  doi: 10.3934/krm.2017017.  Google Scholar

[30] M. N. Kogan, Rarefied Gas Dynamics, Plenum Press, New York, 1969.  doi: 10.1007/978-1-4899-6381-9.  Google Scholar
[31]

D. LevyG. Puppo and G. Russo, Central WENO schemes for hyperbolic systems of conservation laws, ESAIM: Math. Model. Numer. Anal., 33 (1999), 547-571.  doi: 10.1051/m2an:1999152.  Google Scholar

[32]

D. Madjarević and S. Simić, Shock structure in helium-argon mixture-a comparison of hyperbolic multi-temperature model with experiment, EPL, 102 (2013), 44002.  doi: 10.1209/0295-5075/102/44002.  Google Scholar

[33]

T. Ruggeri and S. Simić, On the hyperbolic system of a mixture of Eulerian fluids: A comparison between single- and multi-temperature models, Math. Methods Appl. Sci., 30 (2007), 827-849.  doi: 10.1002/mma.813.  Google Scholar

[34]

G. Russo and F. Filbet, Semilagrangian schemes applied to moving boundary problems for the BGK model of rarefied gas dynamics, Kinet. Relat. Models, 2 (2009), 231-250.  doi: 10.3934/krm.2009.2.231.  Google Scholar

[35]

G. RussoP. Santagati and S.-B. Yun, Convergence of a semi-Lagrangian scheme for the BGK model of the Boltzmann equation, SIAM J. Numer. Anal., 50 (2012), 1111-1135.  doi: 10.1137/100800348.  Google Scholar

[36]

G. Russo and S.-B. Yun, Convergence of a semi-Lagrangian scheme for the ellipsoidal BGK model of the Boltzmann equation, SIAM J. Numer. Anal., 56 (2018), 3580-3610.  doi: 10.1137/17M1163360.  Google Scholar

[37]

P. Santagati and G. Russo, A new class of large time step methods for the BGK models of the Boltzmann equation, preprint, arXiv: 1103.5247. Google Scholar

[38]

S. SimićM. Pavic-Colic and D. Madjarević, Non-equilibrium mixtures of gases: Modelling and computation, Riv. di Mat. della Univ. di Parma, 6 (2015), 135-214.   Google Scholar

[39]

J. Vranjes and P. S. Krstic, Collisions, magnetization, and transport coefficients in the lower solar atmosphere, Astron. Astrophys., 554 (2013), A22. doi: 10.1051/0004-6361/201220738.  Google Scholar

Figure 1.  Time evolution of relative $ L^1 $-norm of the differences in the distribution functions $ g_1 $ between BGK models for various values of $ \varepsilon $. In (a) and (b), the $ x $-axes stand for time and the $ y $-axes are the values obtained by (30)
Figure 2.  Comparison of the three BGK models for $ \varepsilon = 10^{-2} $ (Left) and $ \varepsilon = 10^{-3} $ (Right) with initial data in (29)
Figure 3.  Comparison of the three BGK models for $ \varepsilon = 10^{-4} $ with initial data in (29)
Figure 4.  Comparison of BGK model (10) and NS equations (15) for $ \varepsilon = 10^{-2} $ with initial data in (31)
Figure 5.  Comparison of BGK model (10) and NS equations (15) for $ \varepsilon = 10^{-3} $ (Left) and $ \varepsilon = 10^{-4} $ (Right) with initial data in (31)
Figure 6.  Comparison of the scaled BBGSP model (23) and Navier-Stokes equations (24) with $ \kappa = 1 $ for $ \varepsilon = 10^{-2} $ with initial data in (31)
Figure 7.  Comparison of the scaled BBGSP model (23) and Navier-Stokes equations (24) with $ \kappa = 1 $ for $ \varepsilon = 10^{-3} $ (Left) and $ \varepsilon = 10^{-4} $ (Right) with initial data in (31)
Figure 8.  Comparison of the numerical solution of the scaled BBGSP model (23) for $ \varepsilon = \kappa = 10^{-3} $ with: (left) global velocity and temperature Euler system (15) for $ \varepsilon = 0 $ and (right) multi-velocity and multi-temperature Euler system (24) for $ \varepsilon = 0 $, $ \kappa = 10^{-3} $. We use the initial data in (6.3)
Figure 9.  Comparison of the scaled BBGSP model (23) for $ \varepsilon = \kappa = 10^{-4} $ with: (left) global velocity and temperature Euler system (15) for $ \varepsilon = 0 $ and (right) multi-velocity and multi-temperature Euler system (24) for $ \varepsilon = 0 $, $ \kappa = 10^{-4} $
Figure 10.  Comparison of the scaled BBGSP model (23) for $ \varepsilon = \kappa = 10^{-5} $ with multi-velocity and multi-temperature Euler system (24) for $ \varepsilon = 0 $, $ \kappa = 10^{-5} $
Figure 11.  BDF3-QCWENO35 for $ \varepsilon = 10^{-0} $. Neon and Argon with $ n_1 = 0.1m_1,\quad n_2 = 0.9m_2 $. Black dashed lines are reference NS solutions and solid lines are BGK solutions
[1]

Franz Achleitner, Anton Arnold, Eric A. Carlen. On multi-dimensional hypocoercive BGK models. Kinetic & Related Models, 2018, 11 (4) : 953-1009. doi: 10.3934/krm.2018038

[2]

Alexander V. Bobylev, Marzia Bisi, Maria Groppi, Giampiero Spiga, Irina F. Potapenko. A general consistent BGK model for gas mixtures. Kinetic & Related Models, 2018, 11 (6) : 1377-1393. doi: 10.3934/krm.2018054

[3]

Angelo Morro. Nonlinear diffusion equations in fluid mixtures. Evolution Equations & Control Theory, 2016, 5 (3) : 431-448. doi: 10.3934/eect.2016012

[4]

Abderrahman Iggidr, Josepha Mbang, Gauthier Sallet, Jean-Jules Tewa. Multi-compartment models. Conference Publications, 2007, 2007 (Special) : 506-519. doi: 10.3934/proc.2007.2007.506

[5]

Gilberto M. Kremer, Filipe Oliveira, Ana Jacinta Soares. $\mathcal H$-Theorem and trend to equilibrium of chemically reacting mixtures of gases. Kinetic & Related Models, 2009, 2 (2) : 333-343. doi: 10.3934/krm.2009.2.333

[6]

Nuno J. Alves, Athanasios E. Tzavaras. The relaxation limit of bipolar fluid models. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021113

[7]

Niclas Bernhoff. Boundary layers for discrete kinetic models: Multicomponent mixtures, polyatomic molecules, bimolecular reactions, and quantum kinetic equations. Kinetic & Related Models, 2017, 10 (4) : 925-955. doi: 10.3934/krm.2017037

[8]

Wenjun Wang, Lei Yao. Vanishing viscosity limit to rarefaction waves for the full compressible fluid models of Korteweg type. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2331-2350. doi: 10.3934/cpaa.2014.13.2331

[9]

Axel Klar, Florian Schneider, Oliver Tse. Approximate models for stochastic dynamic systems with velocities on the sphere and associated Fokker--Planck equations. Kinetic & Related Models, 2014, 7 (3) : 509-529. doi: 10.3934/krm.2014.7.509

[10]

Michael Herty, Gabriella Puppo, Sebastiano Roncoroni, Giuseppe Visconti. The BGK approximation of kinetic models for traffic. Kinetic & Related Models, 2020, 13 (2) : 279-307. doi: 10.3934/krm.2020010

[11]

Marcel Braukhoff. Semiconductor Boltzmann-Dirac-Benney equation with a BGK-type collision operator: Existence of solutions vs. ill-posedness. Kinetic & Related Models, 2019, 12 (2) : 445-482. doi: 10.3934/krm.2019019

[12]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[13]

Chunmei Zhang, Wenxue Li, Ke Wang. Graph-theoretic approach to stability of multi-group models with dispersal. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 259-280. doi: 10.3934/dcdsb.2015.20.259

[14]

Felisia Angela Chiarello, Paola Goatin. Non-local multi-class traffic flow models. Networks & Heterogeneous Media, 2019, 14 (2) : 371-387. doi: 10.3934/nhm.2019015

[15]

David M. Chan, Matt McCombs, Sarah Boegner, Hye Jin Ban, Suzanne L. Robertson. Extinction in discrete, competitive, multi-species patch models. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1583-1590. doi: 10.3934/dcdsb.2015.20.1583

[16]

Jung-Chao Ban, Song-Sun Lin. Patterns generation and transition matrices in multi-dimensional lattice models. Discrete & Continuous Dynamical Systems, 2005, 13 (3) : 637-658. doi: 10.3934/dcds.2005.13.637

[17]

Irena Pawłow, Wojciech M. Zajączkowski. A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1823-1847. doi: 10.3934/cpaa.2011.10.1823

[18]

Gi-Chan Bae, Christian Klingenberg, Marlies Pirner, Seok-Bae Yun. BGK model of the multi-species Uehling-Uhlenbeck equation. Kinetic & Related Models, 2021, 14 (1) : 25-44. doi: 10.3934/krm.2020047

[19]

Gabriella Puppo, Matteo Semplice, Andrea Tosin, Giuseppe Visconti. Kinetic models for traffic flow resulting in a reduced space of microscopic velocities. Kinetic & Related Models, 2017, 10 (3) : 823-854. doi: 10.3934/krm.2017033

[20]

Nicola Zamponi. Some fluid-dynamic models for quantum electron transport in graphene via entropy minimization. Kinetic & Related Models, 2012, 5 (1) : 203-221. doi: 10.3934/krm.2012.5.203

2020 Impact Factor: 1.432

Article outline

Figures and Tables

[Back to Top]