The small and large size behavior of stationary solutions to the fragmentation equation with size diffusion is investigated. It is shown that these solutions behave like stretched exponentials for large sizes, the exponent in the exponential being solely given by the behavior of the overall fragmentation rate at infinity. In contrast, the small size behavior is partially governed by the daughter fragmentation distribution and is at most linear, with possibly non-algebraic behavior. Explicit solutions are also provided for particular fragmentation coefficients.
Citation: |
[1] |
R. Alonso, J. A. Cañizo, I. Gamba and C. Mouhot, A new approach to the creation and propagation of exponential moments in the Boltzmann equation, Commun. Partial Differ. Equations, 38 (2013), 155-169.
doi: 10.1080/03605302.2012.715707.![]() ![]() ![]() |
[2] |
D. Balagué, J. A. Cañizo and P. Gabriel, Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates, Kinet. Relat. Models, 6 (2013), 219-243.
doi: 10.3934/krm.2013.6.219.![]() ![]() ![]() |
[3] |
J. Banasiak, W. Lamb and Ph. Laurençot, Analytic Methods for Coagulation-Fragmentation Models, Vol. Ⅱ, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2020.
![]() ![]() |
[4] |
W. Biedrzycka and M. Tyran-Kamińska, Self-similar solutions of fragmentation equations revisited, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 13-27.
doi: 10.3934/dcdsb.2018002.![]() ![]() ![]() |
[5] |
N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, vol. 27 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1987.
doi: 10.1017/CBO9780511721434.![]() ![]() ![]() |
[6] |
M. J. Cáceres, J. A. Cañizo and S. Mischler, Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations, J. Math. Pures Appl. (9), 96 (2011), 334-362.
doi: 10.1016/j.matpur.2011.01.003.![]() ![]() ![]() |
[7] |
\it NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, Release 1.1.1 of 2021-03-15, F.W.J. Olver, A.B. {Olde Daalhuis}, D.W. Lozier, B.I. Schneider, R.F. Boisvert, C.W. Clark, B.R. Miller, B.V. Saunders, H.S. Cohl, and M.A. McClain, eds.
![]() |
[8] |
J. Ferkinghoff-Borg, M. H. Jensen, J. Mathiesen, P. Olesen and K. Sneppen, Competition between diffusion and fragmentation: An important evolutionary process of nature, Phys. Rev. Lett., 91 (2003), 266103.
doi: 10.1103/PhysRevLett.91.266103.![]() ![]() |
[9] |
A. F. Filippov, On the distribution of the sizes of particles which undergo splitting, Theory Probab. Appl., 6 (1961), 275-294.
doi: 10.1137/1106036.![]() ![]() |
[10] |
I. M. Gamba, V. Panferov and C. Villani, Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation, Arch. Ration. Mech. Anal., 194 (2009), 253-282.
doi: 10.1007/s00205-009-0250-9.![]() ![]() ![]() |
[11] |
I. M. Gamba, N. Pavlović and M. Tasković, On pointwise exponentially weighted estimates for the Boltzmann equation, SIAM J. Math. Anal., 51 (2019), 3921-3955.
doi: 10.1137/18M1213191.![]() ![]() ![]() |
[12] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001, Reprint of the 1998 edition.
![]() ![]() |
[13] |
Ph. Laurençot, Steady states for a fragmentation equation with size diffusion, in Nonlocal Elliptic and Parabolic Problems, vol. 66 of Banach Center Publ., Polish Acad. Sci. Inst. Math., Warsaw, 2004,211–219.
doi: 10.4064/bc66-0-14.![]() ![]() ![]() |
[14] |
Ph. Laurençot and Ch. Walker, The fragmentation equation with size diffusion: Well-posedness and long-term behavior, 2021, arXiv: 2104.14798.
![]() |
[15] |
J. Mathiesen, J. Ferkinghoff-Borg, M. H. Jensen, M. Levinsen, P. Olesen, D. Dahl-Jensen and A. Svenson, Dynamics of crystal formation in the Greenland NorthGRIP ice core, J. Glaciol., 50 (2004), 325-328.
doi: 10.3189/172756504781829873.![]() ![]() |
[16] |
E. D. McGrady and R. M. Ziff, "Shattering" transition in fragmentation, Phys. Rev. Lett., 58 (1987), 892-895.
doi: 10.1103/PhysRevLett.58.892.![]() ![]() ![]() |
[17] |
M. Pavić-Čolić and M. Tasković, Propagation of stretched exponential moments for the Kac equation and Boltzmann equation with Maxwell molecules, Kinet. Relat. Models, 11 (2018), 597-613.
doi: 10.3934/krm.2018025.![]() ![]() ![]() |
[18] |
M. Tasković, R. J. Alonso, I. M. Gamba and N. Pavlović, On Mittag-Leffler moments for the Boltzmann equation for hard potentials without cutoff, SIAM J. Math. Anal., 50 (2018), 834-869.
doi: 10.1137/17M1117926.![]() ![]() ![]() |