doi: 10.3934/krm.2021032
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

The fragmentation equation with size diffusion: Small and large size behavior of stationary solutions

1. 

Institut de Mathématiques de Toulouse, UMR 5219, Université de Toulouse, CNRS, F–31062 Toulouse Cedex 9, France

2. 

Leibniz Universität Hannover, Institut für Angewandte Mathematik, Welfengarten 1, D–30167 Hannover, Germany

Received  May 2021 Revised  September 2021 Early access November 2021

Fund Project: The first author is partially supported by Deutscher Akademischer Austauschdienst funding programme Research Stays for University Academics and Scientists, 2021 (57552334)

The small and large size behavior of stationary solutions to the fragmentation equation with size diffusion is investigated. It is shown that these solutions behave like stretched exponentials for large sizes, the exponent in the exponential being solely given by the behavior of the overall fragmentation rate at infinity. In contrast, the small size behavior is partially governed by the daughter fragmentation distribution and is at most linear, with possibly non-algebraic behavior. Explicit solutions are also provided for particular fragmentation coefficients.

Citation: Philippe Laurençot, Christoph Walker. The fragmentation equation with size diffusion: Small and large size behavior of stationary solutions. Kinetic & Related Models, doi: 10.3934/krm.2021032
References:
[1]

R. AlonsoJ. A. CañizoI. Gamba and C. Mouhot, A new approach to the creation and propagation of exponential moments in the Boltzmann equation, Commun. Partial Differ. Equations, 38 (2013), 155-169.  doi: 10.1080/03605302.2012.715707.  Google Scholar

[2]

D. BalaguéJ. A. Cañizo and P. Gabriel, Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates, Kinet. Relat. Models, 6 (2013), 219-243.  doi: 10.3934/krm.2013.6.219.  Google Scholar

[3] J. BanasiakW. Lamb and Ph. Laurençot, Analytic Methods for Coagulation-Fragmentation Models, Vol. Ⅱ, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2020.   Google Scholar
[4]

W. Biedrzycka and M. Tyran-Kamińska, Self-similar solutions of fragmentation equations revisited, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 13-27.  doi: 10.3934/dcdsb.2018002.  Google Scholar

[5] N. H. BinghamC. M. Goldie and J. L. Teugels, Regular Variation, vol. 27 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1987.  doi: 10.1017/CBO9780511721434.  Google Scholar
[6]

M. J. CáceresJ. A. Cañizo and S. Mischler, Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations, J. Math. Pures Appl. (9), 96 (2011), 334-362.  doi: 10.1016/j.matpur.2011.01.003.  Google Scholar

[7]

\it NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, Release 1.1.1 of 2021-03-15, F.W.J. Olver, A.B. {Olde Daalhuis}, D.W. Lozier, B.I. Schneider, R.F. Boisvert, C.W. Clark, B.R. Miller, B.V. Saunders, H.S. Cohl, and M.A. McClain, eds. Google Scholar

[8]

J. Ferkinghoff-BorgM. H. JensenJ. MathiesenP. Olesen and K. Sneppen, Competition between diffusion and fragmentation: An important evolutionary process of nature, Phys. Rev. Lett., 91 (2003), 266103.  doi: 10.1103/PhysRevLett.91.266103.  Google Scholar

[9]

A. F. Filippov, On the distribution of the sizes of particles which undergo splitting, Theory Probab. Appl., 6 (1961), 275-294.  doi: 10.1137/1106036.  Google Scholar

[10]

I. M. GambaV. Panferov and C. Villani, Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation, Arch. Ration. Mech. Anal., 194 (2009), 253-282.  doi: 10.1007/s00205-009-0250-9.  Google Scholar

[11]

I. M. GambaN. Pavlović and M. Tasković, On pointwise exponentially weighted estimates for the Boltzmann equation, SIAM J. Math. Anal., 51 (2019), 3921-3955.  doi: 10.1137/18M1213191.  Google Scholar

[12]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001, Reprint of the 1998 edition.  Google Scholar

[13]

Ph. Laurençot, Steady states for a fragmentation equation with size diffusion, in Nonlocal Elliptic and Parabolic Problems, vol. 66 of Banach Center Publ., Polish Acad. Sci. Inst. Math., Warsaw, 2004,211–219. doi: 10.4064/bc66-0-14.  Google Scholar

[14]

Ph. Laurençot and Ch. Walker, The fragmentation equation with size diffusion: Well-posedness and long-term behavior, 2021, arXiv: 2104.14798. Google Scholar

[15]

J. MathiesenJ. Ferkinghoff-BorgM. H. JensenM. LevinsenP. OlesenD. Dahl-Jensen and A. Svenson, Dynamics of crystal formation in the Greenland NorthGRIP ice core, J. Glaciol., 50 (2004), 325-328.  doi: 10.3189/172756504781829873.  Google Scholar

[16]

E. D. McGrady and R. M. Ziff, "Shattering" transition in fragmentation, Phys. Rev. Lett., 58 (1987), 892-895.  doi: 10.1103/PhysRevLett.58.892.  Google Scholar

[17]

M. Pavić-Čolić and M. Tasković, Propagation of stretched exponential moments for the Kac equation and Boltzmann equation with Maxwell molecules, Kinet. Relat. Models, 11 (2018), 597-613.  doi: 10.3934/krm.2018025.  Google Scholar

[18]

M. TaskovićR. J. AlonsoI. M. Gamba and N. Pavlović, On Mittag-Leffler moments for the Boltzmann equation for hard potentials without cutoff, SIAM J. Math. Anal., 50 (2018), 834-869.  doi: 10.1137/17M1117926.  Google Scholar

show all references

References:
[1]

R. AlonsoJ. A. CañizoI. Gamba and C. Mouhot, A new approach to the creation and propagation of exponential moments in the Boltzmann equation, Commun. Partial Differ. Equations, 38 (2013), 155-169.  doi: 10.1080/03605302.2012.715707.  Google Scholar

[2]

D. BalaguéJ. A. Cañizo and P. Gabriel, Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates, Kinet. Relat. Models, 6 (2013), 219-243.  doi: 10.3934/krm.2013.6.219.  Google Scholar

[3] J. BanasiakW. Lamb and Ph. Laurençot, Analytic Methods for Coagulation-Fragmentation Models, Vol. Ⅱ, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2020.   Google Scholar
[4]

W. Biedrzycka and M. Tyran-Kamińska, Self-similar solutions of fragmentation equations revisited, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 13-27.  doi: 10.3934/dcdsb.2018002.  Google Scholar

[5] N. H. BinghamC. M. Goldie and J. L. Teugels, Regular Variation, vol. 27 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1987.  doi: 10.1017/CBO9780511721434.  Google Scholar
[6]

M. J. CáceresJ. A. Cañizo and S. Mischler, Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations, J. Math. Pures Appl. (9), 96 (2011), 334-362.  doi: 10.1016/j.matpur.2011.01.003.  Google Scholar

[7]

\it NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, Release 1.1.1 of 2021-03-15, F.W.J. Olver, A.B. {Olde Daalhuis}, D.W. Lozier, B.I. Schneider, R.F. Boisvert, C.W. Clark, B.R. Miller, B.V. Saunders, H.S. Cohl, and M.A. McClain, eds. Google Scholar

[8]

J. Ferkinghoff-BorgM. H. JensenJ. MathiesenP. Olesen and K. Sneppen, Competition between diffusion and fragmentation: An important evolutionary process of nature, Phys. Rev. Lett., 91 (2003), 266103.  doi: 10.1103/PhysRevLett.91.266103.  Google Scholar

[9]

A. F. Filippov, On the distribution of the sizes of particles which undergo splitting, Theory Probab. Appl., 6 (1961), 275-294.  doi: 10.1137/1106036.  Google Scholar

[10]

I. M. GambaV. Panferov and C. Villani, Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation, Arch. Ration. Mech. Anal., 194 (2009), 253-282.  doi: 10.1007/s00205-009-0250-9.  Google Scholar

[11]

I. M. GambaN. Pavlović and M. Tasković, On pointwise exponentially weighted estimates for the Boltzmann equation, SIAM J. Math. Anal., 51 (2019), 3921-3955.  doi: 10.1137/18M1213191.  Google Scholar

[12]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001, Reprint of the 1998 edition.  Google Scholar

[13]

Ph. Laurençot, Steady states for a fragmentation equation with size diffusion, in Nonlocal Elliptic and Parabolic Problems, vol. 66 of Banach Center Publ., Polish Acad. Sci. Inst. Math., Warsaw, 2004,211–219. doi: 10.4064/bc66-0-14.  Google Scholar

[14]

Ph. Laurençot and Ch. Walker, The fragmentation equation with size diffusion: Well-posedness and long-term behavior, 2021, arXiv: 2104.14798. Google Scholar

[15]

J. MathiesenJ. Ferkinghoff-BorgM. H. JensenM. LevinsenP. OlesenD. Dahl-Jensen and A. Svenson, Dynamics of crystal formation in the Greenland NorthGRIP ice core, J. Glaciol., 50 (2004), 325-328.  doi: 10.3189/172756504781829873.  Google Scholar

[16]

E. D. McGrady and R. M. Ziff, "Shattering" transition in fragmentation, Phys. Rev. Lett., 58 (1987), 892-895.  doi: 10.1103/PhysRevLett.58.892.  Google Scholar

[17]

M. Pavić-Čolić and M. Tasković, Propagation of stretched exponential moments for the Kac equation and Boltzmann equation with Maxwell molecules, Kinet. Relat. Models, 11 (2018), 597-613.  doi: 10.3934/krm.2018025.  Google Scholar

[18]

M. TaskovićR. J. AlonsoI. M. Gamba and N. Pavlović, On Mittag-Leffler moments for the Boltzmann equation for hard potentials without cutoff, SIAM J. Math. Anal., 50 (2018), 834-869.  doi: 10.1137/17M1117926.  Google Scholar

[1]

Marie Doumic, Miguel Escobedo. Time asymptotics for a critical case in fragmentation and growth-fragmentation equations. Kinetic & Related Models, 2016, 9 (2) : 251-297. doi: 10.3934/krm.2016.9.251

[2]

Jacek Banasiak, Wilson Lamb. Coagulation, fragmentation and growth processes in a size structured population. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 563-585. doi: 10.3934/dcdsb.2009.11.563

[3]

Pierre Degond, Maximilian Engel. Numerical approximation of a coagulation-fragmentation model for animal group size statistics. Networks & Heterogeneous Media, 2017, 12 (2) : 217-243. doi: 10.3934/nhm.2017009

[4]

Wilson Lamb, Adam McBride, Louise Smith. Coagulation and fragmentation processes with evolving size and shape profiles: A semigroup approach. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5177-5187. doi: 10.3934/dcds.2013.33.5177

[5]

Daniel Balagué, José A. Cañizo, Pierre Gabriel. Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates. Kinetic & Related Models, 2013, 6 (2) : 219-243. doi: 10.3934/krm.2013.6.219

[6]

Maxime Breden. Applications of improved duality lemmas to the discrete coagulation-fragmentation equations with diffusion. Kinetic & Related Models, 2018, 11 (2) : 279-301. doi: 10.3934/krm.2018014

[7]

Marek Fila, Hannes Stuke. Special asymptotics for a critical fast diffusion equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 725-735. doi: 10.3934/dcdss.2014.7.725

[8]

Laurent Boudin, Bérénice Grec, Milana Pavić, Francesco Salvarani. Diffusion asymptotics of a kinetic model for gaseous mixtures. Kinetic & Related Models, 2013, 6 (1) : 137-157. doi: 10.3934/krm.2013.6.137

[9]

Mustapha Mokhtar-Kharroubi, Quentin Richard. Spectral theory and time asymptotics of size-structured two-phase population models. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 2969-3004. doi: 10.3934/dcdsb.2020048

[10]

Bara Kim, Jeongsim Kim. Explicit solution for the stationary distribution of a discrete-time finite buffer queue. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1121-1133. doi: 10.3934/jimo.2016.12.1121

[11]

Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete & Continuous Dynamical Systems, 2013, 33 (10) : 4613-4626. doi: 10.3934/dcds.2013.33.4613

[12]

Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic & Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707

[13]

Naoufel Ben Abdallah, Hédia Chaker. Mixed high field and diffusion asymptotics for the fermionic Boltzmann equation. Kinetic & Related Models, 2009, 2 (3) : 403-424. doi: 10.3934/krm.2009.2.403

[14]

Mustapha Mokhtar-Kharroubi, Quentin Richard. Time asymptotics of structured populations with diffusion and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4087-4116. doi: 10.3934/dcdsb.2018127

[15]

Jean Dolbeault, Giuseppe Toscani. Fast diffusion equations: Matching large time asymptotics by relative entropy methods. Kinetic & Related Models, 2011, 4 (3) : 701-716. doi: 10.3934/krm.2011.4.701

[16]

M. Chipot, A. Rougirel. On the asymptotic behaviour of the solution of parabolic problems in cylindrical domains of large size in some directions. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 319-338. doi: 10.3934/dcdsb.2001.1.319

[17]

Zhaoquan Xu, Jiying Ma. Monotonicity, asymptotics and uniqueness of travelling wave solution of a non-local delayed lattice dynamical system. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 5107-5131. doi: 10.3934/dcds.2015.35.5107

[18]

Patrick De Kepper, István Szalai. An effective design method to produce stationary chemical reaction-diffusion patterns. Communications on Pure & Applied Analysis, 2012, 11 (1) : 189-207. doi: 10.3934/cpaa.2012.11.189

[19]

Iryna Pankratova, Andrey Piatnitski. On the behaviour at infinity of solutions to stationary convection-diffusion equation in a cylinder. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 935-970. doi: 10.3934/dcdsb.2009.11.935

[20]

L. Cherfils, Y. Il'yasov. On the stationary solutions of generalized reaction diffusion equations with $p\& q$-Laplacian. Communications on Pure & Applied Analysis, 2005, 4 (1) : 9-22. doi: 10.3934/cpaa.2005.4.9

2020 Impact Factor: 1.432

Article outline

[Back to Top]