June  2022, 15(3): 385-401. doi: 10.3934/krm.2021034

Glassey-Strauss representation of Vlasov-Maxwell systems in a Half Space

1. 

Department of Mathematics, Rutgers University, Piscataway, NJ 08854, USA

2. 

Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53717, USA

3. 

Department of Mathematical Sciences, Seoul National University, Seoul 08826, Republic of Korea

This paper is dedicated to the memory of the late Bob Glassey

Received  June 2021 Published  June 2022 Early access  November 2021

Fund Project: CK is supported in part by National Science Foundation under Grant No. 1900923 and the Brain Pool program (NRF-2021H1D3A2A01039047) of the Ministry of Science and ICT in Korea

Following closely the classical works [5]-[7] by Glassey, Strauss, and Schaeffer, we present a version of the Glassey-Strauss representation for the Vlasov-Maxwell systems in a 3D half space when the boundary is the perfect conductor.

Citation: Yunbai Cao, Chanwoo Kim. Glassey-Strauss representation of Vlasov-Maxwell systems in a Half Space. Kinetic and Related Models, 2022, 15 (3) : 385-401. doi: 10.3934/krm.2021034
References:
[1]

Y. Cao and C. Kim, On some recent progress in the Vlasov-Poisson-Boltzmann system with diffuse reflection boundary, Recent Advances in Kinetic Equations and Applications, Springer INdAM Series, 48 (2021).

[2]

Y. CaoC. Kim and D. Lee, Global strong solutions of the Vlasov-Poisson-Boltzmann system in bounded domains, Arch. Rational Mech. Anal., 233 (2019), 1027-1130.  doi: 10.1007/s00205-019-01374-9.

[3]

J. Cooper and W. Strauss, The initial boundary problem for the Maxwell equations in the presence of a moving body, SIAM J. Math. Anal., 16 (1985), 1165-1179.  doi: 10.1137/0516086.

[4]

G. Federici, et al, Plasma-material interactions in current tokamaks and their implications for next step fusion reactors, Nucl. Fusion, 41 (2001).

[5]

R. T. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics, 1996. doi: 10.1137/1.9781611971477.

[6]

R. T. Glassey and J. Schaeffer, The relativistic Vlasov-Maxwell system in two space dimensions. Ⅰ, Arch. Rational Mech. Anal., 141 (1998), 331-354.  doi: 10.1007/s002050050079.

[7]

R. T. Glassey and J. Schaeffer, The relativistic Vlasov-Maxwell system in two space dimensions. Ⅱ, Arch. Rational Mech. Anal., 141 (1998), 355-374.  doi: 10.1007/s002050050080.

[8]

R. T. Glassey and W. A. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rational Mech. Anal., 92 (1986), 59-90.  doi: 10.1007/BF00250732.

[9]

R. T. Glassey and W. A. Strauss, High velocity particles in a collisionless plasma, Math. Methods Appl. Sci., 9 (1987), 46-52.  doi: 10.1002/mma.1670090105.

[10] D. Griffith, Introduction to Electrodynamics, Cambridge University Press, 4th edition, 2017. 
[11]

Y. Guo, Global weak solutions of the Vlasov-Maxwell system with boundary conditions, Comm. Math. Phys., 154 (1993), 245-263.  doi: 10.1007/BF02096997.

[12]

Y. Guo, Regularity for the Vlasov equations in a half space, Indiana Univ. Math. J., 43 (1994), 255-320.  doi: 10.1512/iumj.1994.43.43013.

[13]

J. D. Jackson, Classical Electrodynamics, Wiley, 3rd edition, 1998. doi: 10.1119/1.19136.

[14]

X. Liu, F. Yang, M. Li and S. Xu, Generalized boundary conditions in surface electromagnetics: Fundamental theorems and surface characterizations, Appl. Sci., 9 (2019). doi: 10.3390/app9091891.

[15]

J. Luk and R. M. Strain, A new continuation criterion for the relativistic Vlasov-Maxwell system, Comm. Math. Phys., 331 (2014), 1005-1027.  doi: 10.1007/s00220-014-2108-8.

[16]

K. McDonald, Electromagnetic fields inside a perfect conductor, Unpublished note.

[17]

T. T. NguyenT. V. Nguyen and W. A. Strauss, Global magnetic confinement for the 1.5D Vlasov-Maxwell system, Kinetic and Related Models, 8 (2015), 153-168.  doi: 10.3934/krm.2015.8.153.

show all references

References:
[1]

Y. Cao and C. Kim, On some recent progress in the Vlasov-Poisson-Boltzmann system with diffuse reflection boundary, Recent Advances in Kinetic Equations and Applications, Springer INdAM Series, 48 (2021).

[2]

Y. CaoC. Kim and D. Lee, Global strong solutions of the Vlasov-Poisson-Boltzmann system in bounded domains, Arch. Rational Mech. Anal., 233 (2019), 1027-1130.  doi: 10.1007/s00205-019-01374-9.

[3]

J. Cooper and W. Strauss, The initial boundary problem for the Maxwell equations in the presence of a moving body, SIAM J. Math. Anal., 16 (1985), 1165-1179.  doi: 10.1137/0516086.

[4]

G. Federici, et al, Plasma-material interactions in current tokamaks and their implications for next step fusion reactors, Nucl. Fusion, 41 (2001).

[5]

R. T. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics, 1996. doi: 10.1137/1.9781611971477.

[6]

R. T. Glassey and J. Schaeffer, The relativistic Vlasov-Maxwell system in two space dimensions. Ⅰ, Arch. Rational Mech. Anal., 141 (1998), 331-354.  doi: 10.1007/s002050050079.

[7]

R. T. Glassey and J. Schaeffer, The relativistic Vlasov-Maxwell system in two space dimensions. Ⅱ, Arch. Rational Mech. Anal., 141 (1998), 355-374.  doi: 10.1007/s002050050080.

[8]

R. T. Glassey and W. A. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rational Mech. Anal., 92 (1986), 59-90.  doi: 10.1007/BF00250732.

[9]

R. T. Glassey and W. A. Strauss, High velocity particles in a collisionless plasma, Math. Methods Appl. Sci., 9 (1987), 46-52.  doi: 10.1002/mma.1670090105.

[10] D. Griffith, Introduction to Electrodynamics, Cambridge University Press, 4th edition, 2017. 
[11]

Y. Guo, Global weak solutions of the Vlasov-Maxwell system with boundary conditions, Comm. Math. Phys., 154 (1993), 245-263.  doi: 10.1007/BF02096997.

[12]

Y. Guo, Regularity for the Vlasov equations in a half space, Indiana Univ. Math. J., 43 (1994), 255-320.  doi: 10.1512/iumj.1994.43.43013.

[13]

J. D. Jackson, Classical Electrodynamics, Wiley, 3rd edition, 1998. doi: 10.1119/1.19136.

[14]

X. Liu, F. Yang, M. Li and S. Xu, Generalized boundary conditions in surface electromagnetics: Fundamental theorems and surface characterizations, Appl. Sci., 9 (2019). doi: 10.3390/app9091891.

[15]

J. Luk and R. M. Strain, A new continuation criterion for the relativistic Vlasov-Maxwell system, Comm. Math. Phys., 331 (2014), 1005-1027.  doi: 10.1007/s00220-014-2108-8.

[16]

K. McDonald, Electromagnetic fields inside a perfect conductor, Unpublished note.

[17]

T. T. NguyenT. V. Nguyen and W. A. Strauss, Global magnetic confinement for the 1.5D Vlasov-Maxwell system, Kinetic and Related Models, 8 (2015), 153-168.  doi: 10.3934/krm.2015.8.153.

[1]

Sergiu Klainerman, Gigliola Staffilani. A new approach to study the Vlasov-Maxwell system. Communications on Pure and Applied Analysis, 2002, 1 (1) : 103-125. doi: 10.3934/cpaa.2002.1.103

[2]

Jonathan Ben-Artzi, Stephen Pankavich, Junyong Zhang. A toy model for the relativistic Vlasov-Maxwell system. Kinetic and Related Models, 2022, 15 (3) : 341-354. doi: 10.3934/krm.2021053

[3]

Toan T. Nguyen, Truyen V. Nguyen, Walter A. Strauss. Global magnetic confinement for the 1.5D Vlasov-Maxwell system. Kinetic and Related Models, 2015, 8 (1) : 153-168. doi: 10.3934/krm.2015.8.153

[4]

Mohammad Asadzadeh, Piotr Kowalczyk, Christoffer Standar. On hp-streamline diffusion and Nitsche schemes for the relativistic Vlasov-Maxwell system. Kinetic and Related Models, 2019, 12 (1) : 105-131. doi: 10.3934/krm.2019005

[5]

Toan T. Nguyen, Truyen V. Nguyen, Walter A. Strauss. Erratum to: Global magnetic confinement for the 1.5D Vlasov-Maxwell system. Kinetic and Related Models, 2015, 8 (3) : 615-616. doi: 10.3934/krm.2015.8.615

[6]

Jin Woo Jang, Robert M. Strain, Tak Kwong Wong. Magnetic confinement for the 2D axisymmetric relativistic Vlasov-Maxwell system in an annulus. Kinetic and Related Models, 2022, 15 (4) : 569-604. doi: 10.3934/krm.2021039

[7]

Zhiwu Lin. Linear instability of Vlasov-Maxwell systems revisited-A Hamiltonian approach. Kinetic and Related Models, 2022, 15 (4) : 663-679. doi: 10.3934/krm.2021048

[8]

Robert Glassey, Stephen Pankavich, Jack Schaeffer. Separated characteristics and global solvability for the one and one-half dimensional Vlasov Maxwell system. Kinetic and Related Models, 2016, 9 (3) : 455-467. doi: 10.3934/krm.2016003

[9]

Stephen Pankavich, Nicholas Michalowski. Global classical solutions for the "One and one-half'' dimensional relativistic Vlasov-Maxwell-Fokker-Planck system. Kinetic and Related Models, 2015, 8 (1) : 169-199. doi: 10.3934/krm.2015.8.169

[10]

Mihai Bostan, Thierry Goudon. Low field regime for the relativistic Vlasov-Maxwell-Fokker-Planck system; the one and one half dimensional case. Kinetic and Related Models, 2008, 1 (1) : 139-170. doi: 10.3934/krm.2008.1.139

[11]

H. M. Yin. Optimal regularity of solution to a degenerate elliptic system arising in electromagnetic fields. Communications on Pure and Applied Analysis, 2002, 1 (1) : 127-134. doi: 10.3934/cpaa.2002.1.127

[12]

Wei Dai, Daoyuan Fang, Chengbo Wang. Lifespan of solutions to the Strauss type wave system on asymptotically flat space-times. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4985-4999. doi: 10.3934/dcds.2020208

[13]

Jörg Weber. Confined steady states of the relativistic Vlasov–Maxwell system in an infinitely long cylinder. Kinetic and Related Models, 2020, 13 (6) : 1135-1161. doi: 10.3934/krm.2020040

[14]

Yemin Chen. Smoothness of classical solutions to the Vlasov-Maxwell-Landau system near Maxwellians. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 889-910. doi: 10.3934/dcds.2008.20.889

[15]

Shuangqian Liu, Qinghua Xiao. The relativistic Vlasov-Maxwell-Boltzmann system for short range interaction. Kinetic and Related Models, 2016, 9 (3) : 515-550. doi: 10.3934/krm.2016005

[16]

Dayton Preissl, Christophe Cheverry, Slim Ibrahim. Uniform lifetime for classical solutions to the Hot, Magnetized, Relativistic Vlasov Maxwell system. Kinetic and Related Models, 2021, 14 (6) : 1035-1079. doi: 10.3934/krm.2021042

[17]

Jingbo Dou, Ye Li. Liouville theorem for an integral system on the upper half space. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 155-171. doi: 10.3934/dcds.2015.35.155

[18]

Weiwei Zhao, Jinge Yang, Sining Zheng. Liouville type theorem to an integral system in the half-space. Communications on Pure and Applied Analysis, 2014, 13 (2) : 511-525. doi: 10.3934/cpaa.2014.13.511

[19]

Sufang Tang, Jingbo Dou. Quantitative analysis of a system of integral equations with weight on the upper half space. Communications on Pure and Applied Analysis, 2022, 21 (1) : 121-140. doi: 10.3934/cpaa.2021171

[20]

Renjun Duan, Shuangqian Liu, Tong Yang, Huijiang Zhao. Stability of the nonrelativistic Vlasov-Maxwell-Boltzmann system for angular non-cutoff potentials. Kinetic and Related Models, 2013, 6 (1) : 159-204. doi: 10.3934/krm.2013.6.159

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (254)
  • HTML views (197)
  • Cited by (0)

Other articles
by authors

[Back to Top]