The fundamental derivation of macroscopic model equations to describe swarms based on microscopic movement laws and mathematical analyses into their self-organisation capabilities remains a challenge from the perspective of both modelling and analysis. In this paper we clarify relevant continuous macroscopic model equations that describe follower-leader interactions for a swarm where these two populations are fixed. We study the behaviour of the swarm over long and short time scales to shed light on the number of leaders needed to initiate swarm movement, according to the homogeneous or inhomogeneous nature of the interaction (alignment) kernel. The results indicate the crucial role played by the interaction kernel to model transient behaviour.
Citation: |
[1] | W. Alt, Biased random walk models for chemotaxis and related diffusion approximations, J. Math. Biol., 9 (1980), 147-177. doi: 10.1007/BF00275919. |
[2] | M. Beekman, R. L. Fathke and T. D. Seeley, How does an informed minority of scouts guide a honeybee swarm as it flies to its new home?, Animal Behaviour, 71 (2006), 161-171. doi: 10.1016/j.anbehav.2005.04.009. |
[3] | N. Bellomo, Modeling Complex Living Systems: A Kinetic Theory and Stochastic Game Approach, Springer Science & Business Media, 2008. |
[4] | A. M. Berdahl, A. B. Kao, A. Flack, P. A. Westley, E. A. Codling, I. D. Couzin, A. I. Dell and D. Biro, Collective animal navigation and migratory culture: From theoretical models to empirical evidence, Philosophical Transactions of the Royal Society B: Biological Sciences, 373 (2018), 20170009. doi: 10.1098/rstb.2017.0009. |
[5] | S. Bernardi, A. Colombi and M. Scianna, A particle model analysing the behavioural rules underlying the collective flight of a bee swarm towards the new nest, J. Biol. Dyn., 12 (2018), 632-662. doi: 10.1080/17513758.2018.1501105. |
[6] | S. Bernardi, R. Eftimie and K. J. Painter, Leadership through influence: What mechanisms allow leaders to steer a swarm?, Bull. Math. Biol., 83 (2021), 1-33. doi: 10.1007/s11538-021-00901-8. |
[7] | L. J. N. Brent, D. W. Franks, E. A. Foster, K. C. Balcomb, M. A. Cant and D. P. Croft, Ecological knowledge, leadership, and the evolution of menopause in killer whales, Current Biology, 25 (2015), 746-750. doi: 10.1016/j.cub.2015.01.037. |
[8] | J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, (2010), 297–336. doi: 10.1007/978-0-8176-4946-3_12. |
[9] | I. D. Couzin, J. Krause, N. R. Franks and S. A. Levin, Effective leadership and decision-making in animal groups on the move, Nature, 433 (2005), 513-516. doi: 10.1038/nature03236. |
[10] | I. D. Couzin, J. Krause, R. James, G. D. Ruxton and N. R. Franks, Collective memory and spatial sorting in animal groups, J. Theoret. Biol., 218 (2002), 1-11. doi: 10.1006/jtbi.2002.3065. |
[11] | F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862. doi: 10.1109/TAC.2007.895842. |
[12] | F. Cucker and S. Smale, On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197-227. doi: 10.1007/s11537-007-0647-x. |
[13] | P. Degond, A. Frouvelle and J.-G. Liu, Macroscopic limits and phase transition in a system of self-propelled particles, J. Nonlinear Sci., 23 (2013), 427-456. doi: 10.1007/s00332-012-9157-y. |
[14] | P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction, Math. Models Methods Appl. Sci., 18 (2008), 1193-1215. doi: 10.1142/S0218202508003005. |
[15] | G. Dimarco and S. Motsch, Self-alignment driven by jump processes: Macroscopic limit and numerical investigation, Math. Models Methods Appl. Sci., 26 (2016), 1385-1410. doi: 10.1142/S0218202516500330. |
[16] | R. Eftimie, Hyperbolic and kinetic models for self-organized biological aggregations and movement: A brief review, J. Math. Biol., 65 (2012), 35-75. doi: 10.1007/s00285-011-0452-2. |
[17] | R. Eftimie, G. De Vries, M. Lewis and F. Lutscher, Modeling group formation and activity patterns in self-organizing collectives of individuals, Bull. Math. Biol., 69 (2007), 1537-1565. doi: 10.1007/s11538-006-9175-8. |
[18] | G. Estrada-Rodriguez and H. Gimperlein, Interacting particles with lévy strategies: Limits of transport equations for swarm robotic systems, SIAM J. Appl. Math., 80 (2020), 476-498. doi: 10.1137/18M1205327. |
[19] | U. Greggers, C. Schoening, J. Degen and R. Menzel, Scouts behave as streakers in honeybee swarms, Naturwissenschaften, 100 (2013), 805-809. doi: 10.1007/s00114-013-1077-7. |
[20] | A. Haeger, K. Wolf, M. M. Zegers and P. Friedl, Collective cell migration: Guidance principles and hierarchies, Trends in Cell Biology, 25 (2015), 556-566. doi: 10.1016/j.tcb.2015.06.003. |
[21] | A. Jadbabaie, J. Lin and A. S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Transactions on Automatic Control, 48 (2003), 29 pp. doi: 10.1109/TAC.2003.812781. |
[22] | N. C. Makris, P. Ratilal, S. Jagannathan, Z. Gong, M. Andrews, I. Bertsatos, O. R. Godø, R. W. Nero and J. M. Jech, Critical population density triggers rapid formation of vast oceanic fish shoals, Science, 323 (2009), 1734-1737. doi: 10.1126/science.1169441. |
[23] | R. Mayor and S. Etienne-Manneville, The front and rear of collective cell migration, Nature Reviews Molecular Cell Biology, 17 (2016), 97-109. doi: 10.1038/nrm.2015.14. |
[24] | A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm, J. Math. Biol., 38 (1999), 534-570. doi: 10.1007/s002850050158. |
[25] | T. Mueller, R. B. O'Hara, S. J. Converse, R. P. Urbanek and W. F. Fagan, Social learning of migratory performance, Science, 341 (2013), 999-1002. doi: 10.1126/science.1237139. |
[26] | M. Nagy, Z. Akos, D. Biro and T. Vicsek, Hierarchical group dynamics in pigeon flocks, Nature, 464 (2010), 890-893. doi: 10.1038/nature08891. |
[27] | H. G. Othmer, S. R. Dunbar and W. Alt, Models of dispersal in biological systems, J. Math. Biol., 26 (1988), 263-298. doi: 10.1007/BF00277392. |
[28] | K. Painter, J. Bloomfield, J. Sherratt and A. Gerisch, A nonlocal model for contact attraction and repulsion in heterogeneous cell populations, Bulletin of Mathematical Biology, 77 (2015), 1132-1165. doi: 10.1007/s11538-015-0080-x. |
[29] | R. Rainey, Radar observations of locust swarms, Science, 157 (1967), 98-99. doi: 10.1126/science.157.3784.98. |
[30] | S. G. Reebs, Can a minority of informed leaders determine the foraging movements of a fish shoal?, Animal Behaviour, 59 (2000), 403-409. doi: 10.1006/anbe.1999.1314. |
[31] | T. D. Seeley, Honeybee Democracy, Princeton University Press, 2010. doi: 10.1515/9781400835959. |
[32] | J. Shen, Cucker–smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2007/08), 694-719. doi: 10.1137/060673254. |
[33] | R. Skaf, G. B. Popov and J. Roffey, The desert locust: An international challenge, Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 328 (1990), 525-538. doi: 10.1098/rstb.1990.0125. |
[34] | C. M. Topaz, A. L. Bertozzi and M. A. Lewis, A nonlocal continuum model for biological aggregation, Bull. Math. Biol., 68 (2006), 1601-1623. doi: 10.1007/s11538-006-9088-6. |
[35] | T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Bull. Math. Biol., 75 (1995), 1226-1229. doi: 10.1103/PhysRevLett.75.1226. |