\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Pointwise bounds for the Green's function for the Neumann-Laplace operator in $ \text{R}^3 $

Bob Glassey and I often discussed the pedagogy of applied analysis, agreeing in particular that elementary facts should have elementary proofs. This work is offered in that spirit and in his memory

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • We derive pointwise bounds for the Green's function and its derivatives for the Laplace operator on smooth bounded sets in $ {\bf R}^3 $ subject to Neumann boundary conditions. The proofs require only ordinary calculus, scaling arguments and the most basic facts of $ L^2 $-Sobolev space theory.

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, Vol. 65, Academic Press, New York-London, 1975.
    [2] S. AgmonA. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math., 12 (1959), 623-727.  doi: 10.1002/cpa.3160120405.
    [3] S. AgmonA. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Comm. Pure Appl. Math., 17 (1964), 35-92.  doi: 10.1002/cpa.3160170104.
    [4] B. E. J. Dahlberg and C. E. Kenig, Hardy spaces and the Neumann problem in $L^p$ for Laplace's equation in Lipschitz domains, Ann. of Math., 125 (1987), 437-465.  doi: 10.2307/1971407.
    [5] O. Druet, F. Robert and J. Wei, The Lin-Ni's Problem for Mean Convex Domains, Mem. Amer. Math. Soc., 2012. doi: 10.1090/S0065-9266-2011-00646-5.
    [6] L. C. Evans, Partial Differential Equations, 2$^{nd}$ edition, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 2010.
    [7] D. Gilbarg and N. S. Trudinger,, Elliptic Partial Differential Equations of Second Order, 2$^{nd}$ edition, Grundlehren der Mathematischen Wissenschaften, 224, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.
    [8] D. Hoff,, Linear and Quasilinear Parabolic Systems, Mathematical Surveys and Monographs, 251, American Mathematical Society, Providence, RI, 2020.
    [9] D. Hoff, Compressible flow in a half-space with Navier boundary conditions, J. Math. Fluid Mech., 7 (2005), 315-338.  doi: 10.1007/s00021-004-0123-9.
    [10] C. E. Kenig and J. Pipher, The Neumann problem for elliptic equations with nonsmooth coefficients, Invent. Math., 113 (1993), 447-509.  doi: 10.1007/BF01244315.
    [11] F. Robert, Construction and asymptotics for the Green Os function with Neumann boundary conditions, Informal Notes, 2010, available at https://iecl.univ-lorraine.fr/files/2021/04/NotesGreenNeumannRobert.pdf.
  • 加载中
SHARE

Article Metrics

HTML views(1697) PDF downloads(404) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return