The initial value problem for incompressible Hookean viscoelastic motion in three space dimensions has global strong solutions with small displacements.
Citation: |
[1] | Y. Cai, Z. Lei, F. Lin and N. Masmoudi, Vanishing viscosity limit for incompressible viscoelasticity in two dimensions, Comm. Pure Appl. Math., 72 (2019), 2063-2120. doi: 10.1002/cpa.21853. |
[2] | J.-Y. Chemin and N. Masmoudi, About lifespan of regular solutions of equations related to viscoelastic fluids, SIAM J. Math. Anal., 33 (2001), 84-112. doi: 10.1137/S0036141099359317. |
[3] | P. Constantin, J. Wu, J. Zhao and Y. Zhu, High Reynolds number and high Weissenberg number Oldroyd-B model with dissipation, J. Evolution Equations, (2020). doi: 10.1007/s00028-020-00616-8. |
[4] | T. M. Elgindi and J. Liu, Global wellposedness to the generalized Oldroyd type models in $\Bbb{R}^3$, J. Differential Equations, 259 (2015), 1958-1966. doi: 10.1016/j.jde.2015.03.026. |
[5] | T. M. Elgindi and F. Rousset, Global regularity for some Oldroyd-B type models, Comm. Pure Appl. Math., 68 (2015), 2005-2021. doi: 10.1002/cpa.21563. |
[6] | B. Y. Jonov, Longtime Behavior of Small Solutions to Viscous Perturbations of Nonlinear Hyperbolic Systems in 3D, Thesis (Ph.D.)–University of California, Santa Barbara, 2014. URL http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:3645652. |
[7] | B. Jonov and T. C. Sideris, Global and almost global existence of small solutions to a dissipative wave equation in 3D with nearly null nonlinear terms, Commun. Pure Appl. Anal., 14 (2015), 1407-1442. doi: 10.3934/cpaa.2015.14.1407. |
[8] | P. Kessenich, Global Existence with Small Initial Data for Three-Dimensional Incompressible Isotropic Viscoelastic Materials, Thesis (Ph.D.)–University of California, Santa Barbara, 2008, URL http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3335016. |
[9] | P. Kessenich, Global existence with small initial data for three-dimensional incompressible isotropic viscoelastic materials, arXiv e-prints, arXiv: 0903.2824. |
[10] | A. A. Kiselev and O. A. Ladyženskaya, On the existence and uniqueness of the solution of the nonstationary problem for a viscous, incompressible fluid, Izv. Akad. Nauk SSSR. Ser. Mat., 21 (1957), 655-680. |
[11] | Z. Lei, C. Liu and Y. Zhou, Global existence for a 2D incompressible viscoelastic model with small strain, Commun. Math. Sci., 5 (2007), 595–616, URL http://projecteuclid.org/euclid.cms/1188405670. doi: 10.4310/CMS.2007.v5.n3.a5. |
[12] | Z. Lei, C. Liu and Y. Zhou, Global solutions for incompressible viscoelastic fluids, Arch. Ration. Mech. Anal., 188 (2008), 371-398. doi: 10.1007/s00205-007-0089-x. |
[13] | F.-H. Lin, C. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids, Comm. Pure Appl. Math., 58 (2005), 1437-1471. doi: 10.1002/cpa.20074. |
[14] | P. L. Lions and N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian flows, Chinese Ann. Math. Ser. B, 21 (2000), 131-146. doi: 10.1142/S0252959900000170. |
[15] | T. C. Sideris, Nonresonance and global existence of prestressed nonlinear elastic waves, Ann. of Math., 151 (2000), 849-874. doi: 10.2307/121050. |
[16] | T. C. Sideris and B. Thomases, Global existence for three-dimensional incompressible isotropic elastodynamics via the incompressible limit, Comm. Pure Appl. Math., 58 (2005), 750-788. doi: 10.1002/cpa.20049. |
[17] | T. C. Sideris and B. Thomases, Global existence for three-dimensional incompressible isotropic elastodynamics, Comm. Pure Appl. Math., 60 (2007), 1707-1730. doi: 10.1002/cpa.20196. |