doi: 10.3934/krm.2021039
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Magnetic confinement for the 2D axisymmetric relativistic Vlasov-Maxwell system in an annulus

1. 

Department of Mathematics, Pohang University of Science and Technology, Pohang, Republic of Korea

2. 

Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104, USA

3. 

Department of Mathematics, The University of Hong Kong, Pokfulam, Hong Kong

* Corresponding author: Robert M. Strain

†Supported by the German DFG grant CRC 1060, the Korean Basic Science Research Institute Fund NRF-2021R1A6A1A10042944 and the Korean IBS grant IBS-R003-D1.
*Partially supported by the NSF grants DMS-1764177 and DMS-2055271 of the USA.
‡Partially supported by the HKU Seed Fund for Basic Research under the project code 201702159009, the Start-up Allowance for Croucher Award Recipients, Hong Kong General Research Fund (GRF) grant "Solving Generic Mean Field Type Problems: Interplay between Partial Differential Equations and Stochastic Analysis" with project number 17306420, and Hong Kong GRF grant "Controlling the Growth of Classical Solutions of a Class of Parabolic Differential Equations with Singular Coefficients: Resolutions for Some Lasting Problems from Economics" with project number 17302521.

Received  July 2021 Revised  November 2021 Early access November 2021

Fund Project:

Although the nuclear fusion process has received a great deal of attention in recent years, the amount of mathematical analysis that supports the stability of the system seems to be relatively insufficient. This paper deals with the mathematical analysis of the magnetic confinement of the plasma via kinetic equations. We prove the global wellposedness of the Vlasov-Maxwell system in a two-dimensional annulus when a huge (but finite-in-time) external magnetic potential is imposed near the boundary. We assume that the solution is axisymmetric. The authors hope that this work is a step towards a more generalized work on the three-dimensional Tokamak structure. The highlight of this work is the physical assumptions on the external magnetic potential well which remains finite within a finite time interval and from that, we prove that the plasma never touches the boundary. In addition, we provide a sufficient condition on the magnitude of the external magnetic potential to guarantee that the plasma is confined in an annulus of the desired thickness which is slightly larger than the initial support. Our method uses the cylindrical coordinate forms of the Vlasov-Maxwell system.

Citation: Jin Woo Jang, Robert M. Strain, Tak Kwong Wong. Magnetic confinement for the 2D axisymmetric relativistic Vlasov-Maxwell system in an annulus. Kinetic & Related Models, doi: 10.3934/krm.2021039
References:
[1]

Y. O. BelyaevaB. Gebhard and A. L. Skubachevskii, A general way to confined stationary Vlasov-Poisson plasma configurations, Kinet. Relat. Models, 14 (2021), 257-282.  doi: 10.3934/krm.2021004.  Google Scholar

[2]

F. BouchutF. Golse and C. Pallard, Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system, Arch. Ration. Mech. Anal., 170 (2003), 1-15.  doi: 10.1007/s00205-003-0265-6.  Google Scholar

[3]

S. CaprinoG. Cavallaro and C. Marchioro, On a magnetically confined plasma with infinite charge, SIAM J. Math. Anal., 46 (2014), 133-164.  doi: 10.1137/130916527.  Google Scholar

[4]

S. CaprinoG. Cavallaro and C. Marchioro, On a Vlasov-Poisson plasma confined in a torus by a magnetic mirror, J. Math. Anal. Appl., 427 (2015), 31-46.  doi: 10.1016/j.jmaa.2015.02.012.  Google Scholar

[5]

S. CaprinoG. Cavallaro and C. Marchioro, On the magnetic shield for a Vlasov-Poisson plasma, J. Stat. Phys., 169 (2017), 1066-1097.  doi: 10.1007/s10955-017-1913-9.  Google Scholar

[6]

S. CaprinoG. Cavallaro and C. Marchioro, Time evolution of a Vlasov-Poisson plasma with magnetic confinement, Kinet. Relat. Models, 5 (2012), 729-742.  doi: 10.3934/krm.2012.5.729.  Google Scholar

[7]

G. A. Cottrell and R. O. Dendy, Superthermal radiation from fusion products in JET, Phys. Rev. Lett., 60 (1988). doi: 10.1103/PhysRevLett.60.33.  Google Scholar

[8]

F. W. Crawford, A review of cyclotron harmonic phenomena in plasmas, Nuclear Fusion, 5 (1965). doi: 10.1088/0029-5515/5/1/010.  Google Scholar

[9]

P. Degond, Local existence of solutions of the Vlasov-Maxwell equations and convergence to the Vlasov-Poisson equations for infinite light velocity, Math. Methods Appl. Sci., 8 (1986), 533-558.  doi: 10.1002/mma.1670080135.  Google Scholar

[10]

P. Degond and F. Filbet, On the asymptotic limit of the three dimensional Vlasov-Poisson system for large magnetic field: Formal derivation, J. Stat. Phys., 165 (2016), 765-784.  doi: 10.1007/s10955-016-1645-2.  Google Scholar

[11]

R. J. DiPerna and P.-L. Lions, Global weak solutions of Vlasov-Maxwell systems, Comm. Pure Appl. Math., 42 (1989), 729-757.  doi: 10.1002/cpa.3160420603.  Google Scholar

[12]

R. L. Dobrushin, Vlasov equations, Funct. Anal. Appl., 13 (1979), 115-123.  doi: 10.1007/BF01077243.  Google Scholar

[13]

A. FasoliS. BrunnerW. A. CooperJ. P. GravesP. RicciO. Sauter and L. Villard, Computational challenges in magnetic-confinement fusion physics, Nature Physics, 12 (2016), 411-423.  doi: 10.1038/nphys3744.  Google Scholar

[14]

F. Filbet and L. M. Rodrigues, Asymptotically preserving particle-in-cell methods for inhomogeneous strongly magnetized plasmas, SIAM J. Numer. Anal., 55 (2017), 2416-2443.  doi: 10.1137/17M1113229.  Google Scholar

[15]

F. Filbet and L. M. Rodrigues, Asymptotically stable particle-in-cell methods for the Vlasov-Poisson system with a strong external magnetic field, SIAM J. Numer. Anal., 54 (2016), 1120-1146.  doi: 10.1137/15M104952X.  Google Scholar

[16]

F. Filbet and L. M. Rodrigues, Asymptotics of the three-dimensional Vlasov equation in the large magnetic field limit, J. Éc. Polytech. Math., 7 (2020), 1009-1067.  doi: 10.5802/jep.134.  Google Scholar

[17]

F. FilbetT. Xiong and E. Sonnendrücker, On the Vlasov-Maxwell system with a strong magnetic field, SIAM J. Appl. Math., 78 (2018), 1030-1055.  doi: 10.1137/17M1112030.  Google Scholar

[18]

P. R. Garabedian, A unified theory of tokamaks and stellarators, Comm. Pure Appl. Math., 47 (1994), 281-292.  doi: 10.1002/cpa.3160470303.  Google Scholar

[19]

R. T. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. doi: 10.1137/1.9781611971477.  Google Scholar

[20]

R. T. Glassey and J. Schaeffer, On the "one and one-half dimensional'' relativistic Vlasov-Maxwell system, Math. Methods Appl. Sci., 13 (1990), 169-179.  doi: 10.1002/mma.1670130207.  Google Scholar

[21]

R. T. Glassey and J. Schaeffer, The relativistic Vlasov-Maxwell system in 2D and 2.5D, in Nonlinear Wave Equations, Contemp. Math., 263, Amer. Math. Soc., Providence, RI, 2000, 61–69. doi: 10.1090/conm/263/04191.  Google Scholar

[22]

R. T. Glassey and J. Schaeffer, The relativistic Vlasov-Maxwell system in two space dimensions. I, II, Arch. Rational Mech. Anal., 141 (1998), 331–354,355–374. doi: 10.1007/s002050050079.  Google Scholar

[23]

R. T. Glassey and J. Schaeffer, The "two and one-half-dimensional'' relativistic Vlasov Maxwell system, Comm. Math. Phys., 185 (1997), 257-284.  doi: 10.1007/s002200050090.  Google Scholar

[24]

R. T. Glassey and J. W. Schaeffer, Global existence for the relativistic Vlasov-Maxwell system with nearly neutral initial data, Comm. Math. Phys., 119 (1988), 353-384.  doi: 10.1007/BF01218078.  Google Scholar

[25]

R. T. Glassey and W. A. Strauss, High velocity particles in a collisionless plasma, Math. Methods Appl. Sci., 9 (1987), 46-52.  doi: 10.1002/mma.1670090105.  Google Scholar

[26]

R. T. Glassey and W. A. Strauss, Remarks on collisionless plasmas, in Fluids and Plasmas: Geometry and Dynamics, Contemp. Math., 28, Amer. Math. Soc., Providence, RI, 1984,269–279. doi: 10.1090/conm/028/751989.  Google Scholar

[27]

R. T. Glassey and W. A. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rational Mech. Anal., 92 (1986), 59-90.  doi: 10.1007/BF00250732.  Google Scholar

[28]

A. P. H. Goede, P. Massmann, H. J. Hopman and J. Kistemaker, Ion Bernstein waves excited by an energeticion beam ion a plasma, Nuclear Fusion, 16 (1976). doi: 10.1088/0029-5515/16/1/009.  Google Scholar

[29]

G. Guest, Electron Cyclotron Heating of Plasmas, Vol. 3, Wiley Online Library, 2009. Google Scholar

[30]

Y. Guo, Global weak solutions of the Vlasov-Maxwell system with boundary conditions, Comm. Math. Phys., 154 (1993), 245-263.  doi: 10.1007/BF02096997.  Google Scholar

[31]

Y. Guo, Singular solutions of the Vlasov-Maxwell system on a half line, Arch. Rational Mech. Anal., 131 (1995), 241-304.  doi: 10.1007/BF00382888.  Google Scholar

[32]

Y. Guo, Stable magnetic equilibria in collisionless plasmas, Comm. Pure Appl. Math., 50 (1997), 891-933.  doi: 10.1002/(SICI)1097-0312(199709)50:9<891::AID-CPA4>3.0.CO;2-0.  Google Scholar

[33]

Y. Guo, Stable magnetic equilibria in a symmetric collisionless plasma, Comm. Math. Phys., 200 (1999), 211-247.  doi: 10.1007/s002200050528.  Google Scholar

[34]

D. Han-Kwan, On the confinement of a tokamak plasma, SIAM J. Math. Anal., 42 (2010), 2337-2367.  doi: 10.1137/090774574.  Google Scholar

[35]

E. Horst, Global solutions of the relativistic Vlasov-Maxwell system of plasma physics, Dissertationes Math. (Rozprawy Mat.), 292 (1990), 63pp.  Google Scholar

[36]

R. F. Hubbard and T. J. Birmingham, Electrostatic emissions between electron gyroharmonics in the outer magnetosphere, J. Geophys. Res.: Space Physics, 83 (1978), 4837-4850.  doi: 10.1029/JA083iA10p04837.  Google Scholar

[37]

M. Kunze, Yet another criterion for global existence in the 3D relativistic Vlasov-Maxwell system, J. Differential Equations, 259 (2015), 4413-4442.  doi: 10.1016/j.jde.2015.06.003.  Google Scholar

[38]

J. Luk and R. M. Strain, A new continuation criterion for the relativistic Vlasov-Maxwell system, Comm. Math. Phys., 331 (2014), 1005-1027.  doi: 10.1007/s00220-014-2108-8.  Google Scholar

[39]

J. Luk and R. M. Strain, Strichartz estimates and moment bounds for the relativistic Vlasov-Maxwell system, Arch. Ration. Mech. Anal., 219 (2016), 445-552.  doi: 10.1007/s00205-015-0899-1.  Google Scholar

[40]

T. T. NguyenT. V. Nguyen and W. A. Strauss, Erratum to: Global magnetic confinement for the 1.5D Vlasov-Maxwell system, Kinet. Relat. Models, 8 (2015), 615-616.  doi: 10.3934/krm.2015.8.615.  Google Scholar

[41]

T. T. NguyenT. V. Nguyen and W. A. Strauss, Global magnetic confinement for the 1.5D Vlasov-Maxwell system, Kinet. Relat. Models, 8 (2015), 153-168.  doi: 10.3934/krm.2015.8.153.  Google Scholar

[42]

J. OngenaR. KochR. Wolf and H. Zohm, Magnetic-confinement fusion, Nature Physics, 12 (2016), 398-410.  doi: 10.1038/nphys3745.  Google Scholar

[43]

N. Patel, Three new results on continuation criteria for the 3D relativistic Vlasov-Maxwell system, J. Differential Equations, 264 (2018), 1841-1885.  doi: 10.1016/j.jde.2017.10.008.  Google Scholar

[44]

S. PerrautA. RouxP. RobertR. GendrinJ.-A. SauvaudJ.-M. BosquedG. Kremser and A. Korth, A systematic study of ULF waves above $F_{H+}$ from GEOS 1 and 2 measurements and their relationships with proton ring distributions, J. Geophys. Res.: Space Physics, 87 (1982), 6219-6236.  doi: 10.1029/JA087iA08p06219.  Google Scholar

[45]

R. F. Post and M. N. Rosenbluth, Electrostatic instabilities in finite mirror-confined plasmas, Phys. Fluids, 9 (1966), 730-749.  doi: 10.1063/1.1761740.  Google Scholar

[46]

G. Rein, Generic global solutions of the relativistic Vlasov-Maxwell system of plasma physics, Comm. Math. Phys., 135 (1990), 41-78.  doi: 10.1007/BF02097656.  Google Scholar

[47]

R. M. Strain, The Vlasov-Maxwell-Boltzmann system in the whole space, Comm. Math. Phys., 268 (2006), 543-567.  doi: 10.1007/s00220-006-0109-y.  Google Scholar

[48]

H. Tasso and G. Throumoulopoulos, Tokamak-like Vlasov equilibria, European Phys. J. D, 68 (2014). doi: 10.1140/epjd/e2014-50007-9.  Google Scholar

[49]

G. Vogman, Fourth-Order Conservative Vlasov-Maxwell Solver for Cartesian and Cylindrical Phase Space Coordinates, Ph.D thesis, University of California in Berkeley, 2016. Google Scholar

[50]

R. B. White, The Theory of Toroidally Confined Plasmas, 2nd edition, Imperial College Press, London, 2001. doi: 10.1142/p237.  Google Scholar

show all references

References:
[1]

Y. O. BelyaevaB. Gebhard and A. L. Skubachevskii, A general way to confined stationary Vlasov-Poisson plasma configurations, Kinet. Relat. Models, 14 (2021), 257-282.  doi: 10.3934/krm.2021004.  Google Scholar

[2]

F. BouchutF. Golse and C. Pallard, Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system, Arch. Ration. Mech. Anal., 170 (2003), 1-15.  doi: 10.1007/s00205-003-0265-6.  Google Scholar

[3]

S. CaprinoG. Cavallaro and C. Marchioro, On a magnetically confined plasma with infinite charge, SIAM J. Math. Anal., 46 (2014), 133-164.  doi: 10.1137/130916527.  Google Scholar

[4]

S. CaprinoG. Cavallaro and C. Marchioro, On a Vlasov-Poisson plasma confined in a torus by a magnetic mirror, J. Math. Anal. Appl., 427 (2015), 31-46.  doi: 10.1016/j.jmaa.2015.02.012.  Google Scholar

[5]

S. CaprinoG. Cavallaro and C. Marchioro, On the magnetic shield for a Vlasov-Poisson plasma, J. Stat. Phys., 169 (2017), 1066-1097.  doi: 10.1007/s10955-017-1913-9.  Google Scholar

[6]

S. CaprinoG. Cavallaro and C. Marchioro, Time evolution of a Vlasov-Poisson plasma with magnetic confinement, Kinet. Relat. Models, 5 (2012), 729-742.  doi: 10.3934/krm.2012.5.729.  Google Scholar

[7]

G. A. Cottrell and R. O. Dendy, Superthermal radiation from fusion products in JET, Phys. Rev. Lett., 60 (1988). doi: 10.1103/PhysRevLett.60.33.  Google Scholar

[8]

F. W. Crawford, A review of cyclotron harmonic phenomena in plasmas, Nuclear Fusion, 5 (1965). doi: 10.1088/0029-5515/5/1/010.  Google Scholar

[9]

P. Degond, Local existence of solutions of the Vlasov-Maxwell equations and convergence to the Vlasov-Poisson equations for infinite light velocity, Math. Methods Appl. Sci., 8 (1986), 533-558.  doi: 10.1002/mma.1670080135.  Google Scholar

[10]

P. Degond and F. Filbet, On the asymptotic limit of the three dimensional Vlasov-Poisson system for large magnetic field: Formal derivation, J. Stat. Phys., 165 (2016), 765-784.  doi: 10.1007/s10955-016-1645-2.  Google Scholar

[11]

R. J. DiPerna and P.-L. Lions, Global weak solutions of Vlasov-Maxwell systems, Comm. Pure Appl. Math., 42 (1989), 729-757.  doi: 10.1002/cpa.3160420603.  Google Scholar

[12]

R. L. Dobrushin, Vlasov equations, Funct. Anal. Appl., 13 (1979), 115-123.  doi: 10.1007/BF01077243.  Google Scholar

[13]

A. FasoliS. BrunnerW. A. CooperJ. P. GravesP. RicciO. Sauter and L. Villard, Computational challenges in magnetic-confinement fusion physics, Nature Physics, 12 (2016), 411-423.  doi: 10.1038/nphys3744.  Google Scholar

[14]

F. Filbet and L. M. Rodrigues, Asymptotically preserving particle-in-cell methods for inhomogeneous strongly magnetized plasmas, SIAM J. Numer. Anal., 55 (2017), 2416-2443.  doi: 10.1137/17M1113229.  Google Scholar

[15]

F. Filbet and L. M. Rodrigues, Asymptotically stable particle-in-cell methods for the Vlasov-Poisson system with a strong external magnetic field, SIAM J. Numer. Anal., 54 (2016), 1120-1146.  doi: 10.1137/15M104952X.  Google Scholar

[16]

F. Filbet and L. M. Rodrigues, Asymptotics of the three-dimensional Vlasov equation in the large magnetic field limit, J. Éc. Polytech. Math., 7 (2020), 1009-1067.  doi: 10.5802/jep.134.  Google Scholar

[17]

F. FilbetT. Xiong and E. Sonnendrücker, On the Vlasov-Maxwell system with a strong magnetic field, SIAM J. Appl. Math., 78 (2018), 1030-1055.  doi: 10.1137/17M1112030.  Google Scholar

[18]

P. R. Garabedian, A unified theory of tokamaks and stellarators, Comm. Pure Appl. Math., 47 (1994), 281-292.  doi: 10.1002/cpa.3160470303.  Google Scholar

[19]

R. T. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. doi: 10.1137/1.9781611971477.  Google Scholar

[20]

R. T. Glassey and J. Schaeffer, On the "one and one-half dimensional'' relativistic Vlasov-Maxwell system, Math. Methods Appl. Sci., 13 (1990), 169-179.  doi: 10.1002/mma.1670130207.  Google Scholar

[21]

R. T. Glassey and J. Schaeffer, The relativistic Vlasov-Maxwell system in 2D and 2.5D, in Nonlinear Wave Equations, Contemp. Math., 263, Amer. Math. Soc., Providence, RI, 2000, 61–69. doi: 10.1090/conm/263/04191.  Google Scholar

[22]

R. T. Glassey and J. Schaeffer, The relativistic Vlasov-Maxwell system in two space dimensions. I, II, Arch. Rational Mech. Anal., 141 (1998), 331–354,355–374. doi: 10.1007/s002050050079.  Google Scholar

[23]

R. T. Glassey and J. Schaeffer, The "two and one-half-dimensional'' relativistic Vlasov Maxwell system, Comm. Math. Phys., 185 (1997), 257-284.  doi: 10.1007/s002200050090.  Google Scholar

[24]

R. T. Glassey and J. W. Schaeffer, Global existence for the relativistic Vlasov-Maxwell system with nearly neutral initial data, Comm. Math. Phys., 119 (1988), 353-384.  doi: 10.1007/BF01218078.  Google Scholar

[25]

R. T. Glassey and W. A. Strauss, High velocity particles in a collisionless plasma, Math. Methods Appl. Sci., 9 (1987), 46-52.  doi: 10.1002/mma.1670090105.  Google Scholar

[26]

R. T. Glassey and W. A. Strauss, Remarks on collisionless plasmas, in Fluids and Plasmas: Geometry and Dynamics, Contemp. Math., 28, Amer. Math. Soc., Providence, RI, 1984,269–279. doi: 10.1090/conm/028/751989.  Google Scholar

[27]

R. T. Glassey and W. A. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rational Mech. Anal., 92 (1986), 59-90.  doi: 10.1007/BF00250732.  Google Scholar

[28]

A. P. H. Goede, P. Massmann, H. J. Hopman and J. Kistemaker, Ion Bernstein waves excited by an energeticion beam ion a plasma, Nuclear Fusion, 16 (1976). doi: 10.1088/0029-5515/16/1/009.  Google Scholar

[29]

G. Guest, Electron Cyclotron Heating of Plasmas, Vol. 3, Wiley Online Library, 2009. Google Scholar

[30]

Y. Guo, Global weak solutions of the Vlasov-Maxwell system with boundary conditions, Comm. Math. Phys., 154 (1993), 245-263.  doi: 10.1007/BF02096997.  Google Scholar

[31]

Y. Guo, Singular solutions of the Vlasov-Maxwell system on a half line, Arch. Rational Mech. Anal., 131 (1995), 241-304.  doi: 10.1007/BF00382888.  Google Scholar

[32]

Y. Guo, Stable magnetic equilibria in collisionless plasmas, Comm. Pure Appl. Math., 50 (1997), 891-933.  doi: 10.1002/(SICI)1097-0312(199709)50:9<891::AID-CPA4>3.0.CO;2-0.  Google Scholar

[33]

Y. Guo, Stable magnetic equilibria in a symmetric collisionless plasma, Comm. Math. Phys., 200 (1999), 211-247.  doi: 10.1007/s002200050528.  Google Scholar

[34]

D. Han-Kwan, On the confinement of a tokamak plasma, SIAM J. Math. Anal., 42 (2010), 2337-2367.  doi: 10.1137/090774574.  Google Scholar

[35]

E. Horst, Global solutions of the relativistic Vlasov-Maxwell system of plasma physics, Dissertationes Math. (Rozprawy Mat.), 292 (1990), 63pp.  Google Scholar

[36]

R. F. Hubbard and T. J. Birmingham, Electrostatic emissions between electron gyroharmonics in the outer magnetosphere, J. Geophys. Res.: Space Physics, 83 (1978), 4837-4850.  doi: 10.1029/JA083iA10p04837.  Google Scholar

[37]

M. Kunze, Yet another criterion for global existence in the 3D relativistic Vlasov-Maxwell system, J. Differential Equations, 259 (2015), 4413-4442.  doi: 10.1016/j.jde.2015.06.003.  Google Scholar

[38]

J. Luk and R. M. Strain, A new continuation criterion for the relativistic Vlasov-Maxwell system, Comm. Math. Phys., 331 (2014), 1005-1027.  doi: 10.1007/s00220-014-2108-8.  Google Scholar

[39]

J. Luk and R. M. Strain, Strichartz estimates and moment bounds for the relativistic Vlasov-Maxwell system, Arch. Ration. Mech. Anal., 219 (2016), 445-552.  doi: 10.1007/s00205-015-0899-1.  Google Scholar

[40]

T. T. NguyenT. V. Nguyen and W. A. Strauss, Erratum to: Global magnetic confinement for the 1.5D Vlasov-Maxwell system, Kinet. Relat. Models, 8 (2015), 615-616.  doi: 10.3934/krm.2015.8.615.  Google Scholar

[41]

T. T. NguyenT. V. Nguyen and W. A. Strauss, Global magnetic confinement for the 1.5D Vlasov-Maxwell system, Kinet. Relat. Models, 8 (2015), 153-168.  doi: 10.3934/krm.2015.8.153.  Google Scholar

[42]

J. OngenaR. KochR. Wolf and H. Zohm, Magnetic-confinement fusion, Nature Physics, 12 (2016), 398-410.  doi: 10.1038/nphys3745.  Google Scholar

[43]

N. Patel, Three new results on continuation criteria for the 3D relativistic Vlasov-Maxwell system, J. Differential Equations, 264 (2018), 1841-1885.  doi: 10.1016/j.jde.2017.10.008.  Google Scholar

[44]

S. PerrautA. RouxP. RobertR. GendrinJ.-A. SauvaudJ.-M. BosquedG. Kremser and A. Korth, A systematic study of ULF waves above $F_{H+}$ from GEOS 1 and 2 measurements and their relationships with proton ring distributions, J. Geophys. Res.: Space Physics, 87 (1982), 6219-6236.  doi: 10.1029/JA087iA08p06219.  Google Scholar

[45]

R. F. Post and M. N. Rosenbluth, Electrostatic instabilities in finite mirror-confined plasmas, Phys. Fluids, 9 (1966), 730-749.  doi: 10.1063/1.1761740.  Google Scholar

[46]

G. Rein, Generic global solutions of the relativistic Vlasov-Maxwell system of plasma physics, Comm. Math. Phys., 135 (1990), 41-78.  doi: 10.1007/BF02097656.  Google Scholar

[47]

R. M. Strain, The Vlasov-Maxwell-Boltzmann system in the whole space, Comm. Math. Phys., 268 (2006), 543-567.  doi: 10.1007/s00220-006-0109-y.  Google Scholar

[48]

H. Tasso and G. Throumoulopoulos, Tokamak-like Vlasov equilibria, European Phys. J. D, 68 (2014). doi: 10.1140/epjd/e2014-50007-9.  Google Scholar

[49]

G. Vogman, Fourth-Order Conservative Vlasov-Maxwell Solver for Cartesian and Cylindrical Phase Space Coordinates, Ph.D thesis, University of California in Berkeley, 2016. Google Scholar

[50]

R. B. White, The Theory of Toroidally Confined Plasmas, 2nd edition, Imperial College Press, London, 2001. doi: 10.1142/p237.  Google Scholar

Figure 1.  The domain $ \Delta $
[1]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. Time evolution of a Vlasov-Poisson plasma with magnetic confinement. Kinetic & Related Models, 2012, 5 (4) : 729-742. doi: 10.3934/krm.2012.5.729

[2]

Toan T. Nguyen, Truyen V. Nguyen, Walter A. Strauss. Global magnetic confinement for the 1.5D Vlasov-Maxwell system. Kinetic & Related Models, 2015, 8 (1) : 153-168. doi: 10.3934/krm.2015.8.153

[3]

Toan T. Nguyen, Truyen V. Nguyen, Walter A. Strauss. Erratum to: Global magnetic confinement for the 1.5D Vlasov-Maxwell system. Kinetic & Related Models, 2015, 8 (3) : 615-616. doi: 10.3934/krm.2015.8.615

[4]

Frédérique Charles, Bruno Després, Benoît Perthame, Rémis Sentis. Nonlinear stability of a Vlasov equation for magnetic plasmas. Kinetic & Related Models, 2013, 6 (2) : 269-290. doi: 10.3934/krm.2013.6.269

[5]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. A Vlasov-Poisson plasma with unbounded mass and velocities confined in a cylinder by a magnetic mirror. Kinetic & Related Models, 2016, 9 (4) : 657-686. doi: 10.3934/krm.2016011

[6]

Baptiste Fedele, Claudia Negulescu. Numerical study of an anisotropic Vlasov equation arising in plasma physics. Kinetic & Related Models, 2018, 11 (6) : 1395-1426. doi: 10.3934/krm.2018055

[7]

Yuanjie Lei, Huijiang Zhao. The Vlasov-Maxwell-Boltzmann system near Maxwellians with strong background magnetic field. Kinetic & Related Models, 2020, 13 (3) : 599-621. doi: 10.3934/krm.2020020

[8]

Oǧul Esen, Serkan Sütlü. Matched pair analysis of the Vlasov plasma. Journal of Geometric Mechanics, 2021, 13 (2) : 209-246. doi: 10.3934/jgm.2021011

[9]

Bernard Ducomet, Alexander Zlotnik. On a regularization of the magnetic gas dynamics system of equations. Kinetic & Related Models, 2013, 6 (3) : 533-543. doi: 10.3934/krm.2013.6.533

[10]

Mihaï Bostan. Asymptotic behavior for the Vlasov-Poisson equations with strong uniform magnetic field and general initial conditions. Kinetic & Related Models, 2020, 13 (3) : 531-548. doi: 10.3934/krm.2020018

[11]

Sergiu Klainerman, Gigliola Staffilani. A new approach to study the Vlasov-Maxwell system. Communications on Pure & Applied Analysis, 2002, 1 (1) : 103-125. doi: 10.3934/cpaa.2002.1.103

[12]

Gang Li, Xianwen Zhang. A Vlasov-Poisson plasma of infinite mass with a point charge. Kinetic & Related Models, 2018, 11 (2) : 303-336. doi: 10.3934/krm.2018015

[13]

Yulia O. Belyaeva, Björn Gebhard, Alexander L. Skubachevskii. A general way to confined stationary Vlasov-Poisson plasma configurations. Kinetic & Related Models, 2021, 14 (2) : 257-282. doi: 10.3934/krm.2021004

[14]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete & Continuous Dynamical Systems, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[15]

Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems & Imaging, 2007, 1 (1) : 159-179. doi: 10.3934/ipi.2007.1.159

[16]

Jörg Weber. Confined steady states of the relativistic Vlasov–Maxwell system in an infinitely long cylinder. Kinetic & Related Models, 2020, 13 (6) : 1135-1161. doi: 10.3934/krm.2020040

[17]

Yemin Chen. Smoothness of classical solutions to the Vlasov-Maxwell-Landau system near Maxwellians. Discrete & Continuous Dynamical Systems, 2008, 20 (4) : 889-910. doi: 10.3934/dcds.2008.20.889

[18]

Shuangqian Liu, Qinghua Xiao. The relativistic Vlasov-Maxwell-Boltzmann system for short range interaction. Kinetic & Related Models, 2016, 9 (3) : 515-550. doi: 10.3934/krm.2016005

[19]

Yunbai Cao, Chanwoo Kim. Glassey-Strauss representation of Vlasov-Maxwell systems in a Half Space. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021034

[20]

Maxime Herda, Luis Miguel Rodrigues. Anisotropic Boltzmann-Gibbs dynamics of strongly magnetized Vlasov-Fokker-Planck equations. Kinetic & Related Models, 2019, 12 (3) : 593-636. doi: 10.3934/krm.2019024

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (22)
  • HTML views (18)
  • Cited by (0)

Other articles
by authors

[Back to Top]