doi: 10.3934/krm.2021040
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

The Einstein-Vlasov system in maximal areal coordinates---Local existence and continuation

Department of Mathematics, University of Bayreuth, Germany

* Corresponding author: Gerhard Rein

Dedicated to the memory of Prof. Robert T. Glassey

Received  May 2021 Early access November 2021

We consider the spherically symmetric, asymptotically flat Einstein-Vlasov system in maximal areal coordinates. The latter coordinates have been used both in analytical and numerical investigations of the Einstein-Vlasov system [3,8,18,19], but neither a local existence theorem nor a suitable continuation criterion has so far been established for the corresponding nonlinear system of PDEs. We close this gap. Although the analysis follows lines similar to the corresponding result in Schwarzschild coordinates, essential new difficulties arise from to the much more complicated form which the field equations take, while at the same time it becomes easier to control the necessary, highest order derivatives of the solution. The latter observation may be useful in subsequent investigations.

Citation: Sebastian Günther, Gerhard Rein. The Einstein-Vlasov system in maximal areal coordinates---Local existence and continuation. Kinetic & Related Models, doi: 10.3934/krm.2021040
References:
[1]

H. Andréasson, Black hole formation from a complete regular past for collisionless matter, Ann. Henri Poincaré, 13 (2012), 1511-1536.  doi: 10.1007/s00023-012-0164-1.  Google Scholar

[2]

H. AndréassonM. Kunze and G. Rein, Existence of axially symmetric static solutions of the Einstein-Vlasov system, Comm. Math. Phys., 308 (2011), 23-47.  doi: 10.1007/s00220-011-1324-8.  Google Scholar

[3]

H. AndréassonM. Kunze and G. Rein, Global existence for the spherically symmetric Einstein-Vlasov system with outgoing matter, Commun. Partial Differential Equations, 33 (2008), 656-668.  doi: 10.1080/03605300701454883.  Google Scholar

[4]

H. AndréassonM. Kunze and G. Rein, Gravitational collapse and the formation of black holes for the spherically symmetric Einstein-Vlasov system, Quart. Appl. Math., 68 (2010), 17-42.  doi: 10.1090/S0033-569X-09-01165-9.  Google Scholar

[5]

H. AndréassonM. Kunze and G. Rein, The formation of black holes in spherically symmetric gravitational collapse, Math. Ann., 350 (2011), 683-705.  doi: 10.1007/s00208-010-0578-3.  Google Scholar

[6]

H. AndréassonM. Kunze and G. Rein, Rotating, stationary, axially symmetric spacetimes with collisionless matter, Comm. Math. Phys., 329 (2014), 787-808.  doi: 10.1007/s00220-014-1904-5.  Google Scholar

[7]

H. Andréasson and G. Rein, Formation of trapped surfaces for the spherically symmetric Einstein-Vlasov system, J. Hyperbolic Differ. Equ., 7 (2010), 707-731.  doi: 10.1142/S0219891610002268.  Google Scholar

[8]

H. Andréasson and G. Rein, A numerical investigation of the stability of steady states and critical phenomena for the spherically symmetric Einstein–Vlasov system, Classical Quantum Gravity, 23 (2006), 3659-3677.  doi: 10.1088/0264-9381/23/11/001.  Google Scholar

[9]

J. Batt, Global symmetric solutions of the initial value problem of stellar dynamics, J. Differential Equations, 25 (1977), 342-364.  doi: 10.1016/0022-0396(77)90049-3.  Google Scholar

[10] T. Baumgarte and S. Shapiro, Numerical Relativity: Solving Einstein's Equations on the Computer, Cambridge University Press, 2010.  doi: 10.1017/CBO9781139193344.  Google Scholar
[11]

Y. Choquet-Bruhat, Problème de Cauchy pour le système intégro différentiel d'Einstein-Liouville, Ann. Inst. Fourier (Grenoble), 21 (1971), 181-201.  doi: 10.5802/aif.385.  Google Scholar

[12]

M. Dafermos, Spherically symmetric spacetimes with a trapped surface, Classical Quantum Gravity, 22 (2005), 2221-2232.  doi: 10.1088/0264-9381/22/11/019.  Google Scholar

[13]

M. Dafermos and A. D. Rendall, An extension principle for the Einstein-Vlasov system in spherical symmetry, Ann. Henri Poincaré, 6 (2005), 1137-1155.  doi: 10.1007/s00023-005-0235-7.  Google Scholar

[14]

D. FajmanJ. Joudioux and J. Smulevici, The stability of the Minkowski space for the Einstein-Vlasov system, Anal. PDE, 14 (2021), 425-531.  doi: 10.2140/apde.2021.14.425.  Google Scholar

[15]

R. T. Glassey and W. A. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rational Mech. Anal., 92 (1986), 59-90.  doi: 10.1007/BF00250732.  Google Scholar

[16]

É. Gourgoulhon, $3+1$ Formalism in General Relativity. Bases of Numerical Relativity, Lecture Notes in Physics, 846, Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-24525-1.  Google Scholar

[17]

S. Günther, The Einstein-Vlasov System in Maximal Areal Coordinates, Masters thesis, University of Bayreuth, 2019. Google Scholar

[18]

S. Günther, J. Körner, T. Lebeda, B. Pötzl, G. Rein, C. Straub and J. Weber, A numerical stability analysis for the Einstein-Vlasov system, Classical Quantum Gravity, 38 (2021), 27pp. doi: 10.1088/1361-6382/abcbdf.  Google Scholar

[19]

S. Günther, C. Straub and G. Rein, Collisionless equilibria in general relativity: Stable configurations beyond the first binding energy maximum, Astrophysical J., 918 (2021), 48pp. doi: 10.3847/1538-4357/ac0eef.  Google Scholar

[20]

M. HadžićZ. Lin and G. Rein, Stability and instability of self-gravitating relativistic matter distributions, Arch. Ration. Mech. Anal., 241 (2021), 1-89.  doi: 10.1007/s00205-021-01647-2.  Google Scholar

[21]

M. Hadžić and G. Rein, On the small redshift limit of steady states of the spherically symmetric Einstein-Vlasov system and their stability, Math. Proc. Cambridge Philos. Soc., 159 (2015), 529-546.  doi: 10.1017/S0305004115000511.  Google Scholar

[22]

M. Hadžić and G. Rein, Stability for the spherically symmetric Einstein-Vlasov system–-A coercivity estimate, Math. Proc. Cambridge Philos. Soc., 155 (2013), 529-556.  doi: 10.1017/S030500411300056X.  Google Scholar

[23]

H. Lindblad and M. Taylor, Global stability of Minkowski space for the Einstein–Vlasov system in the harmonic gauge, Arch. Ration. Mech. Anal., 235 (2020), 517-633.  doi: 10.1007/s00205-019-01425-1.  Google Scholar

[24]

E. Malec and N. Ó Murchadha, Optical scalars and singularity avoidance in spherical spacetimes, Phys. Rev. D, 50 (1994), R6033–R6036. doi: 10.1103/PhysRevD.50.R6033.  Google Scholar

[25]

T. Ramming and G. Rein, Spherically symmetric equilibria for self-gravitating kinetic or fluid models in the non-relativistic and relativistic case–-A simple proof for finite extension, SIAM J. Math. Anal., 45 (2013), 900-914.  doi: 10.1137/120896712.  Google Scholar

[26]

G. Rein, Collisionless kinetic equations from astrophysics–-The Vlasov-Poisson system, in Handbook of Differential Equations: Evolutionary Equations, Handb. Differ. Equ., 3, Elsevier/North-Holland, Amsterdam, 2007,383–476. doi: 10.1016/S1874-5717(07)80008-9.  Google Scholar

[27]

G. Rein, The Vlasov-Einstein System with Surface Symmetry, Habilitation thesis, Ludwig-Maximilians-Universität in Munich, 1995. Google Scholar

[28]

G. Rein and A. D. Rendall, Global existence of solutions of the spherically symmetric Vlasov-Einstein system with small initial data, Comm. Math. Phys., 150 (1992), 561-583.  doi: 10.1007/BF02096962.  Google Scholar

[29]

G. Rein and A. D. Rendall, Erratum: "Global existence of solutions of the spherically symmetric Vlasov-Einstein system with small initial data", Comm. Math. Phys., 176 (1996), 475-478.  doi: 10.1007/BF02099559.  Google Scholar

[30]

A. D. Rendall, An introduction to the Vlasov-Einstein system, in Mathematics of Gravitation, Part I, Banach Center Publ., 41, Part I, Polish Acad. Sci. Inst. Math., Warsaw, 1997, 35-68.  Google Scholar

[31] A. D. Rendall, Partial Differential Equations in General Relativity, Oxford Graduate Texts in Mathematics, 16, Oxford University Press, Oxford, 2008.   Google Scholar
[32]

M. Taylor, The global nonlinear stability of Minkowski space for the massless Einstein-Vlasov system, Ann. PDE, 3 (2017), 177pp. doi: 10.1007/s40818-017-0026-8.  Google Scholar

[33] R. M. Wald, General Relativity, University of Chicago Press, Chicago, IL, 1984.  doi: 10.7208/chicago/9780226870373.001.0001.  Google Scholar
[34]

J. York, Kinematics and dynamics of general relativity, in Sources of Gravitational Radiation, Cambridge University Press, 1979, 83-126. Google Scholar

show all references

References:
[1]

H. Andréasson, Black hole formation from a complete regular past for collisionless matter, Ann. Henri Poincaré, 13 (2012), 1511-1536.  doi: 10.1007/s00023-012-0164-1.  Google Scholar

[2]

H. AndréassonM. Kunze and G. Rein, Existence of axially symmetric static solutions of the Einstein-Vlasov system, Comm. Math. Phys., 308 (2011), 23-47.  doi: 10.1007/s00220-011-1324-8.  Google Scholar

[3]

H. AndréassonM. Kunze and G. Rein, Global existence for the spherically symmetric Einstein-Vlasov system with outgoing matter, Commun. Partial Differential Equations, 33 (2008), 656-668.  doi: 10.1080/03605300701454883.  Google Scholar

[4]

H. AndréassonM. Kunze and G. Rein, Gravitational collapse and the formation of black holes for the spherically symmetric Einstein-Vlasov system, Quart. Appl. Math., 68 (2010), 17-42.  doi: 10.1090/S0033-569X-09-01165-9.  Google Scholar

[5]

H. AndréassonM. Kunze and G. Rein, The formation of black holes in spherically symmetric gravitational collapse, Math. Ann., 350 (2011), 683-705.  doi: 10.1007/s00208-010-0578-3.  Google Scholar

[6]

H. AndréassonM. Kunze and G. Rein, Rotating, stationary, axially symmetric spacetimes with collisionless matter, Comm. Math. Phys., 329 (2014), 787-808.  doi: 10.1007/s00220-014-1904-5.  Google Scholar

[7]

H. Andréasson and G. Rein, Formation of trapped surfaces for the spherically symmetric Einstein-Vlasov system, J. Hyperbolic Differ. Equ., 7 (2010), 707-731.  doi: 10.1142/S0219891610002268.  Google Scholar

[8]

H. Andréasson and G. Rein, A numerical investigation of the stability of steady states and critical phenomena for the spherically symmetric Einstein–Vlasov system, Classical Quantum Gravity, 23 (2006), 3659-3677.  doi: 10.1088/0264-9381/23/11/001.  Google Scholar

[9]

J. Batt, Global symmetric solutions of the initial value problem of stellar dynamics, J. Differential Equations, 25 (1977), 342-364.  doi: 10.1016/0022-0396(77)90049-3.  Google Scholar

[10] T. Baumgarte and S. Shapiro, Numerical Relativity: Solving Einstein's Equations on the Computer, Cambridge University Press, 2010.  doi: 10.1017/CBO9781139193344.  Google Scholar
[11]

Y. Choquet-Bruhat, Problème de Cauchy pour le système intégro différentiel d'Einstein-Liouville, Ann. Inst. Fourier (Grenoble), 21 (1971), 181-201.  doi: 10.5802/aif.385.  Google Scholar

[12]

M. Dafermos, Spherically symmetric spacetimes with a trapped surface, Classical Quantum Gravity, 22 (2005), 2221-2232.  doi: 10.1088/0264-9381/22/11/019.  Google Scholar

[13]

M. Dafermos and A. D. Rendall, An extension principle for the Einstein-Vlasov system in spherical symmetry, Ann. Henri Poincaré, 6 (2005), 1137-1155.  doi: 10.1007/s00023-005-0235-7.  Google Scholar

[14]

D. FajmanJ. Joudioux and J. Smulevici, The stability of the Minkowski space for the Einstein-Vlasov system, Anal. PDE, 14 (2021), 425-531.  doi: 10.2140/apde.2021.14.425.  Google Scholar

[15]

R. T. Glassey and W. A. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rational Mech. Anal., 92 (1986), 59-90.  doi: 10.1007/BF00250732.  Google Scholar

[16]

É. Gourgoulhon, $3+1$ Formalism in General Relativity. Bases of Numerical Relativity, Lecture Notes in Physics, 846, Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-24525-1.  Google Scholar

[17]

S. Günther, The Einstein-Vlasov System in Maximal Areal Coordinates, Masters thesis, University of Bayreuth, 2019. Google Scholar

[18]

S. Günther, J. Körner, T. Lebeda, B. Pötzl, G. Rein, C. Straub and J. Weber, A numerical stability analysis for the Einstein-Vlasov system, Classical Quantum Gravity, 38 (2021), 27pp. doi: 10.1088/1361-6382/abcbdf.  Google Scholar

[19]

S. Günther, C. Straub and G. Rein, Collisionless equilibria in general relativity: Stable configurations beyond the first binding energy maximum, Astrophysical J., 918 (2021), 48pp. doi: 10.3847/1538-4357/ac0eef.  Google Scholar

[20]

M. HadžićZ. Lin and G. Rein, Stability and instability of self-gravitating relativistic matter distributions, Arch. Ration. Mech. Anal., 241 (2021), 1-89.  doi: 10.1007/s00205-021-01647-2.  Google Scholar

[21]

M. Hadžić and G. Rein, On the small redshift limit of steady states of the spherically symmetric Einstein-Vlasov system and their stability, Math. Proc. Cambridge Philos. Soc., 159 (2015), 529-546.  doi: 10.1017/S0305004115000511.  Google Scholar

[22]

M. Hadžić and G. Rein, Stability for the spherically symmetric Einstein-Vlasov system–-A coercivity estimate, Math. Proc. Cambridge Philos. Soc., 155 (2013), 529-556.  doi: 10.1017/S030500411300056X.  Google Scholar

[23]

H. Lindblad and M. Taylor, Global stability of Minkowski space for the Einstein–Vlasov system in the harmonic gauge, Arch. Ration. Mech. Anal., 235 (2020), 517-633.  doi: 10.1007/s00205-019-01425-1.  Google Scholar

[24]

E. Malec and N. Ó Murchadha, Optical scalars and singularity avoidance in spherical spacetimes, Phys. Rev. D, 50 (1994), R6033–R6036. doi: 10.1103/PhysRevD.50.R6033.  Google Scholar

[25]

T. Ramming and G. Rein, Spherically symmetric equilibria for self-gravitating kinetic or fluid models in the non-relativistic and relativistic case–-A simple proof for finite extension, SIAM J. Math. Anal., 45 (2013), 900-914.  doi: 10.1137/120896712.  Google Scholar

[26]

G. Rein, Collisionless kinetic equations from astrophysics–-The Vlasov-Poisson system, in Handbook of Differential Equations: Evolutionary Equations, Handb. Differ. Equ., 3, Elsevier/North-Holland, Amsterdam, 2007,383–476. doi: 10.1016/S1874-5717(07)80008-9.  Google Scholar

[27]

G. Rein, The Vlasov-Einstein System with Surface Symmetry, Habilitation thesis, Ludwig-Maximilians-Universität in Munich, 1995. Google Scholar

[28]

G. Rein and A. D. Rendall, Global existence of solutions of the spherically symmetric Vlasov-Einstein system with small initial data, Comm. Math. Phys., 150 (1992), 561-583.  doi: 10.1007/BF02096962.  Google Scholar

[29]

G. Rein and A. D. Rendall, Erratum: "Global existence of solutions of the spherically symmetric Vlasov-Einstein system with small initial data", Comm. Math. Phys., 176 (1996), 475-478.  doi: 10.1007/BF02099559.  Google Scholar

[30]

A. D. Rendall, An introduction to the Vlasov-Einstein system, in Mathematics of Gravitation, Part I, Banach Center Publ., 41, Part I, Polish Acad. Sci. Inst. Math., Warsaw, 1997, 35-68.  Google Scholar

[31] A. D. Rendall, Partial Differential Equations in General Relativity, Oxford Graduate Texts in Mathematics, 16, Oxford University Press, Oxford, 2008.   Google Scholar
[32]

M. Taylor, The global nonlinear stability of Minkowski space for the massless Einstein-Vlasov system, Ann. PDE, 3 (2017), 177pp. doi: 10.1007/s40818-017-0026-8.  Google Scholar

[33] R. M. Wald, General Relativity, University of Chicago Press, Chicago, IL, 1984.  doi: 10.7208/chicago/9780226870373.001.0001.  Google Scholar
[34]

J. York, Kinematics and dynamics of general relativity, in Sources of Gravitational Radiation, Cambridge University Press, 1979, 83-126. Google Scholar

[1]

Gerhard Rein, Christopher Straub. On the transport operators arising from linearizing the Vlasov-Poisson or Einstein-Vlasov system about isotropic steady states. Kinetic & Related Models, 2020, 13 (5) : 933-949. doi: 10.3934/krm.2020032

[2]

Irena Lasiecka, Mathias Wilke. Maximal regularity and global existence of solutions to a quasilinear thermoelastic plate system. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5189-5202. doi: 10.3934/dcds.2013.33.5189

[3]

Hyung Ju Hwang, Jaewoo Jung, Juan J. L. Velázquez. On global existence of classical solutions for the Vlasov-Poisson system in convex bounded domains. Discrete & Continuous Dynamical Systems, 2013, 33 (2) : 723-737. doi: 10.3934/dcds.2013.33.723

[4]

Simone Calogero, Stephen Pankavich. On the spatially homogeneous and isotropic Einstein-Vlasov-Fokker-Planck system with cosmological scalar field. Kinetic & Related Models, 2018, 11 (5) : 1063-1083. doi: 10.3934/krm.2018041

[5]

Katherine Zhiyuan Zhang. Focusing solutions of the Vlasov-Poisson system. Kinetic & Related Models, 2019, 12 (6) : 1313-1327. doi: 10.3934/krm.2019051

[6]

Robert Jensen, Andrzej Świech. Uniqueness and existence of maximal and minimal solutions of fully nonlinear elliptic PDE. Communications on Pure & Applied Analysis, 2005, 4 (1) : 199-207. doi: 10.3934/cpaa.2005.4.187

[7]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic & Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129

[8]

Marta Lewicka, Piotr B. Mucha. A local existence result for a system of viscoelasticity with physical viscosity. Evolution Equations & Control Theory, 2013, 2 (2) : 337-353. doi: 10.3934/eect.2013.2.337

[9]

Gianluca Crippa, Silvia Ligabue, Chiara Saffirio. Lagrangian solutions to the Vlasov-Poisson system with a point charge. Kinetic & Related Models, 2018, 11 (6) : 1277-1299. doi: 10.3934/krm.2018050

[10]

Yemin Chen. Smoothness of classical solutions to the Vlasov-Poisson-Landau system. Kinetic & Related Models, 2008, 1 (3) : 369-386. doi: 10.3934/krm.2008.1.369

[11]

Xiuting Li. The energy conservation for weak solutions to the relativistic Nordström-Vlasov system. Evolution Equations & Control Theory, 2016, 5 (1) : 135-145. doi: 10.3934/eect.2016.5.135

[12]

Yemin Chen. Smoothness of classical solutions to the Vlasov-Maxwell-Landau system near Maxwellians. Discrete & Continuous Dynamical Systems, 2008, 20 (4) : 889-910. doi: 10.3934/dcds.2008.20.889

[13]

Meixia Xiao, Xianwen Zhang. On global solutions to the Vlasov-Poisson system with radiation damping. Kinetic & Related Models, 2018, 11 (5) : 1183-1209. doi: 10.3934/krm.2018046

[14]

Lan Luo, Hongjun Yu. Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system. Kinetic & Related Models, 2016, 9 (2) : 393-405. doi: 10.3934/krm.2016.9.393

[15]

Kosuke Ono, Walter A. Strauss. Regular solutions of the Vlasov-Poisson-Fokker-Planck system. Discrete & Continuous Dynamical Systems, 2000, 6 (4) : 751-772. doi: 10.3934/dcds.2000.6.751

[16]

Christian Pötzsche. Nonautonomous continuation of bounded solutions. Communications on Pure & Applied Analysis, 2011, 10 (3) : 937-961. doi: 10.3934/cpaa.2011.10.937

[17]

Benjamin Letson, Jonathan E. Rubin. Local orthogonal rectification: Deriving natural coordinates to study flows relative to manifolds. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3725-3747. doi: 10.3934/dcdsb.2020088

[18]

Qiaoyi Hu, Zhijun Qiao. Persistence properties and unique continuation for a dispersionless two-component Camassa-Holm system with peakon and weak kink solutions. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2613-2625. doi: 10.3934/dcds.2016.36.2613

[19]

Yuhua Zhu. A local sensitivity and regularity analysis for the Vlasov-Poisson-Fokker-Planck system with multi-dimensional uncertainty and the spectral convergence of the stochastic Galerkin method. Networks & Heterogeneous Media, 2019, 14 (4) : 677-707. doi: 10.3934/nhm.2019027

[20]

Bingkang Huang, Lan Zhang. A global existence of classical solutions to the two-dimensional Vlasov-Fokker-Planck and magnetohydrodynamics equations with large initial data. Kinetic & Related Models, 2019, 12 (2) : 357-396. doi: 10.3934/krm.2019016

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (35)
  • HTML views (17)
  • Cited by (0)

Other articles
by authors

[Back to Top]