August  2022, 15(4): 681-719. doi: 10.3934/krm.2021040

The Einstein-Vlasov system in maximal areal coordinates---Local existence and continuation

Department of Mathematics, University of Bayreuth, Germany

* Corresponding author: Gerhard Rein

Dedicated to the memory of Prof. Robert T. Glassey

Received  May 2021 Published  August 2022 Early access  November 2021

We consider the spherically symmetric, asymptotically flat Einstein-Vlasov system in maximal areal coordinates. The latter coordinates have been used both in analytical and numerical investigations of the Einstein-Vlasov system [3,8,18,19], but neither a local existence theorem nor a suitable continuation criterion has so far been established for the corresponding nonlinear system of PDEs. We close this gap. Although the analysis follows lines similar to the corresponding result in Schwarzschild coordinates, essential new difficulties arise from to the much more complicated form which the field equations take, while at the same time it becomes easier to control the necessary, highest order derivatives of the solution. The latter observation may be useful in subsequent investigations.

Citation: Sebastian Günther, Gerhard Rein. The Einstein-Vlasov system in maximal areal coordinates---Local existence and continuation. Kinetic and Related Models, 2022, 15 (4) : 681-719. doi: 10.3934/krm.2021040
References:
[1]

H. Andréasson, Black hole formation from a complete regular past for collisionless matter, Ann. Henri Poincaré, 13 (2012), 1511-1536.  doi: 10.1007/s00023-012-0164-1.

[2]

H. AndréassonM. Kunze and G. Rein, Existence of axially symmetric static solutions of the Einstein-Vlasov system, Comm. Math. Phys., 308 (2011), 23-47.  doi: 10.1007/s00220-011-1324-8.

[3]

H. AndréassonM. Kunze and G. Rein, Global existence for the spherically symmetric Einstein-Vlasov system with outgoing matter, Commun. Partial Differential Equations, 33 (2008), 656-668.  doi: 10.1080/03605300701454883.

[4]

H. AndréassonM. Kunze and G. Rein, Gravitational collapse and the formation of black holes for the spherically symmetric Einstein-Vlasov system, Quart. Appl. Math., 68 (2010), 17-42.  doi: 10.1090/S0033-569X-09-01165-9.

[5]

H. AndréassonM. Kunze and G. Rein, The formation of black holes in spherically symmetric gravitational collapse, Math. Ann., 350 (2011), 683-705.  doi: 10.1007/s00208-010-0578-3.

[6]

H. AndréassonM. Kunze and G. Rein, Rotating, stationary, axially symmetric spacetimes with collisionless matter, Comm. Math. Phys., 329 (2014), 787-808.  doi: 10.1007/s00220-014-1904-5.

[7]

H. Andréasson and G. Rein, Formation of trapped surfaces for the spherically symmetric Einstein-Vlasov system, J. Hyperbolic Differ. Equ., 7 (2010), 707-731.  doi: 10.1142/S0219891610002268.

[8]

H. Andréasson and G. Rein, A numerical investigation of the stability of steady states and critical phenomena for the spherically symmetric Einstein–Vlasov system, Classical Quantum Gravity, 23 (2006), 3659-3677.  doi: 10.1088/0264-9381/23/11/001.

[9]

J. Batt, Global symmetric solutions of the initial value problem of stellar dynamics, J. Differential Equations, 25 (1977), 342-364.  doi: 10.1016/0022-0396(77)90049-3.

[10] T. Baumgarte and S. Shapiro, Numerical Relativity: Solving Einstein's Equations on the Computer, Cambridge University Press, 2010.  doi: 10.1017/CBO9781139193344.
[11]

Y. Choquet-Bruhat, Problème de Cauchy pour le système intégro différentiel d'Einstein-Liouville, Ann. Inst. Fourier (Grenoble), 21 (1971), 181-201.  doi: 10.5802/aif.385.

[12]

M. Dafermos, Spherically symmetric spacetimes with a trapped surface, Classical Quantum Gravity, 22 (2005), 2221-2232.  doi: 10.1088/0264-9381/22/11/019.

[13]

M. Dafermos and A. D. Rendall, An extension principle for the Einstein-Vlasov system in spherical symmetry, Ann. Henri Poincaré, 6 (2005), 1137-1155.  doi: 10.1007/s00023-005-0235-7.

[14]

D. FajmanJ. Joudioux and J. Smulevici, The stability of the Minkowski space for the Einstein-Vlasov system, Anal. PDE, 14 (2021), 425-531.  doi: 10.2140/apde.2021.14.425.

[15]

R. T. Glassey and W. A. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rational Mech. Anal., 92 (1986), 59-90.  doi: 10.1007/BF00250732.

[16]

É. Gourgoulhon, $3+1$ Formalism in General Relativity. Bases of Numerical Relativity, Lecture Notes in Physics, 846, Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-24525-1.

[17]

S. Günther, The Einstein-Vlasov System in Maximal Areal Coordinates, Masters thesis, University of Bayreuth, 2019.

[18]

S. Günther, J. Körner, T. Lebeda, B. Pötzl, G. Rein, C. Straub and J. Weber, A numerical stability analysis for the Einstein-Vlasov system, Classical Quantum Gravity, 38 (2021), 27pp. doi: 10.1088/1361-6382/abcbdf.

[19]

S. Günther, C. Straub and G. Rein, Collisionless equilibria in general relativity: Stable configurations beyond the first binding energy maximum, Astrophysical J., 918 (2021), 48pp. doi: 10.3847/1538-4357/ac0eef.

[20]

M. HadžićZ. Lin and G. Rein, Stability and instability of self-gravitating relativistic matter distributions, Arch. Ration. Mech. Anal., 241 (2021), 1-89.  doi: 10.1007/s00205-021-01647-2.

[21]

M. Hadžić and G. Rein, On the small redshift limit of steady states of the spherically symmetric Einstein-Vlasov system and their stability, Math. Proc. Cambridge Philos. Soc., 159 (2015), 529-546.  doi: 10.1017/S0305004115000511.

[22]

M. Hadžić and G. Rein, Stability for the spherically symmetric Einstein-Vlasov system–-A coercivity estimate, Math. Proc. Cambridge Philos. Soc., 155 (2013), 529-556.  doi: 10.1017/S030500411300056X.

[23]

H. Lindblad and M. Taylor, Global stability of Minkowski space for the Einstein–Vlasov system in the harmonic gauge, Arch. Ration. Mech. Anal., 235 (2020), 517-633.  doi: 10.1007/s00205-019-01425-1.

[24]

E. Malec and N. Ó Murchadha, Optical scalars and singularity avoidance in spherical spacetimes, Phys. Rev. D, 50 (1994), R6033–R6036. doi: 10.1103/PhysRevD.50.R6033.

[25]

T. Ramming and G. Rein, Spherically symmetric equilibria for self-gravitating kinetic or fluid models in the non-relativistic and relativistic case–-A simple proof for finite extension, SIAM J. Math. Anal., 45 (2013), 900-914.  doi: 10.1137/120896712.

[26]

G. Rein, Collisionless kinetic equations from astrophysics–-The Vlasov-Poisson system, in Handbook of Differential Equations: Evolutionary Equations, Handb. Differ. Equ., 3, Elsevier/North-Holland, Amsterdam, 2007,383–476. doi: 10.1016/S1874-5717(07)80008-9.

[27]

G. Rein, The Vlasov-Einstein System with Surface Symmetry, Habilitation thesis, Ludwig-Maximilians-Universität in Munich, 1995.

[28]

G. Rein and A. D. Rendall, Global existence of solutions of the spherically symmetric Vlasov-Einstein system with small initial data, Comm. Math. Phys., 150 (1992), 561-583.  doi: 10.1007/BF02096962.

[29]

G. Rein and A. D. Rendall, Erratum: "Global existence of solutions of the spherically symmetric Vlasov-Einstein system with small initial data", Comm. Math. Phys., 176 (1996), 475-478.  doi: 10.1007/BF02099559.

[30]

A. D. Rendall, An introduction to the Vlasov-Einstein system, in Mathematics of Gravitation, Part I, Banach Center Publ., 41, Part I, Polish Acad. Sci. Inst. Math., Warsaw, 1997, 35-68.

[31] A. D. Rendall, Partial Differential Equations in General Relativity, Oxford Graduate Texts in Mathematics, 16, Oxford University Press, Oxford, 2008. 
[32]

M. Taylor, The global nonlinear stability of Minkowski space for the massless Einstein-Vlasov system, Ann. PDE, 3 (2017), 177pp. doi: 10.1007/s40818-017-0026-8.

[33] R. M. Wald, General Relativity, University of Chicago Press, Chicago, IL, 1984.  doi: 10.7208/chicago/9780226870373.001.0001.
[34]

J. York, Kinematics and dynamics of general relativity, in Sources of Gravitational Radiation, Cambridge University Press, 1979, 83-126.

show all references

References:
[1]

H. Andréasson, Black hole formation from a complete regular past for collisionless matter, Ann. Henri Poincaré, 13 (2012), 1511-1536.  doi: 10.1007/s00023-012-0164-1.

[2]

H. AndréassonM. Kunze and G. Rein, Existence of axially symmetric static solutions of the Einstein-Vlasov system, Comm. Math. Phys., 308 (2011), 23-47.  doi: 10.1007/s00220-011-1324-8.

[3]

H. AndréassonM. Kunze and G. Rein, Global existence for the spherically symmetric Einstein-Vlasov system with outgoing matter, Commun. Partial Differential Equations, 33 (2008), 656-668.  doi: 10.1080/03605300701454883.

[4]

H. AndréassonM. Kunze and G. Rein, Gravitational collapse and the formation of black holes for the spherically symmetric Einstein-Vlasov system, Quart. Appl. Math., 68 (2010), 17-42.  doi: 10.1090/S0033-569X-09-01165-9.

[5]

H. AndréassonM. Kunze and G. Rein, The formation of black holes in spherically symmetric gravitational collapse, Math. Ann., 350 (2011), 683-705.  doi: 10.1007/s00208-010-0578-3.

[6]

H. AndréassonM. Kunze and G. Rein, Rotating, stationary, axially symmetric spacetimes with collisionless matter, Comm. Math. Phys., 329 (2014), 787-808.  doi: 10.1007/s00220-014-1904-5.

[7]

H. Andréasson and G. Rein, Formation of trapped surfaces for the spherically symmetric Einstein-Vlasov system, J. Hyperbolic Differ. Equ., 7 (2010), 707-731.  doi: 10.1142/S0219891610002268.

[8]

H. Andréasson and G. Rein, A numerical investigation of the stability of steady states and critical phenomena for the spherically symmetric Einstein–Vlasov system, Classical Quantum Gravity, 23 (2006), 3659-3677.  doi: 10.1088/0264-9381/23/11/001.

[9]

J. Batt, Global symmetric solutions of the initial value problem of stellar dynamics, J. Differential Equations, 25 (1977), 342-364.  doi: 10.1016/0022-0396(77)90049-3.

[10] T. Baumgarte and S. Shapiro, Numerical Relativity: Solving Einstein's Equations on the Computer, Cambridge University Press, 2010.  doi: 10.1017/CBO9781139193344.
[11]

Y. Choquet-Bruhat, Problème de Cauchy pour le système intégro différentiel d'Einstein-Liouville, Ann. Inst. Fourier (Grenoble), 21 (1971), 181-201.  doi: 10.5802/aif.385.

[12]

M. Dafermos, Spherically symmetric spacetimes with a trapped surface, Classical Quantum Gravity, 22 (2005), 2221-2232.  doi: 10.1088/0264-9381/22/11/019.

[13]

M. Dafermos and A. D. Rendall, An extension principle for the Einstein-Vlasov system in spherical symmetry, Ann. Henri Poincaré, 6 (2005), 1137-1155.  doi: 10.1007/s00023-005-0235-7.

[14]

D. FajmanJ. Joudioux and J. Smulevici, The stability of the Minkowski space for the Einstein-Vlasov system, Anal. PDE, 14 (2021), 425-531.  doi: 10.2140/apde.2021.14.425.

[15]

R. T. Glassey and W. A. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rational Mech. Anal., 92 (1986), 59-90.  doi: 10.1007/BF00250732.

[16]

É. Gourgoulhon, $3+1$ Formalism in General Relativity. Bases of Numerical Relativity, Lecture Notes in Physics, 846, Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-24525-1.

[17]

S. Günther, The Einstein-Vlasov System in Maximal Areal Coordinates, Masters thesis, University of Bayreuth, 2019.

[18]

S. Günther, J. Körner, T. Lebeda, B. Pötzl, G. Rein, C. Straub and J. Weber, A numerical stability analysis for the Einstein-Vlasov system, Classical Quantum Gravity, 38 (2021), 27pp. doi: 10.1088/1361-6382/abcbdf.

[19]

S. Günther, C. Straub and G. Rein, Collisionless equilibria in general relativity: Stable configurations beyond the first binding energy maximum, Astrophysical J., 918 (2021), 48pp. doi: 10.3847/1538-4357/ac0eef.

[20]

M. HadžićZ. Lin and G. Rein, Stability and instability of self-gravitating relativistic matter distributions, Arch. Ration. Mech. Anal., 241 (2021), 1-89.  doi: 10.1007/s00205-021-01647-2.

[21]

M. Hadžić and G. Rein, On the small redshift limit of steady states of the spherically symmetric Einstein-Vlasov system and their stability, Math. Proc. Cambridge Philos. Soc., 159 (2015), 529-546.  doi: 10.1017/S0305004115000511.

[22]

M. Hadžić and G. Rein, Stability for the spherically symmetric Einstein-Vlasov system–-A coercivity estimate, Math. Proc. Cambridge Philos. Soc., 155 (2013), 529-556.  doi: 10.1017/S030500411300056X.

[23]

H. Lindblad and M. Taylor, Global stability of Minkowski space for the Einstein–Vlasov system in the harmonic gauge, Arch. Ration. Mech. Anal., 235 (2020), 517-633.  doi: 10.1007/s00205-019-01425-1.

[24]

E. Malec and N. Ó Murchadha, Optical scalars and singularity avoidance in spherical spacetimes, Phys. Rev. D, 50 (1994), R6033–R6036. doi: 10.1103/PhysRevD.50.R6033.

[25]

T. Ramming and G. Rein, Spherically symmetric equilibria for self-gravitating kinetic or fluid models in the non-relativistic and relativistic case–-A simple proof for finite extension, SIAM J. Math. Anal., 45 (2013), 900-914.  doi: 10.1137/120896712.

[26]

G. Rein, Collisionless kinetic equations from astrophysics–-The Vlasov-Poisson system, in Handbook of Differential Equations: Evolutionary Equations, Handb. Differ. Equ., 3, Elsevier/North-Holland, Amsterdam, 2007,383–476. doi: 10.1016/S1874-5717(07)80008-9.

[27]

G. Rein, The Vlasov-Einstein System with Surface Symmetry, Habilitation thesis, Ludwig-Maximilians-Universität in Munich, 1995.

[28]

G. Rein and A. D. Rendall, Global existence of solutions of the spherically symmetric Vlasov-Einstein system with small initial data, Comm. Math. Phys., 150 (1992), 561-583.  doi: 10.1007/BF02096962.

[29]

G. Rein and A. D. Rendall, Erratum: "Global existence of solutions of the spherically symmetric Vlasov-Einstein system with small initial data", Comm. Math. Phys., 176 (1996), 475-478.  doi: 10.1007/BF02099559.

[30]

A. D. Rendall, An introduction to the Vlasov-Einstein system, in Mathematics of Gravitation, Part I, Banach Center Publ., 41, Part I, Polish Acad. Sci. Inst. Math., Warsaw, 1997, 35-68.

[31] A. D. Rendall, Partial Differential Equations in General Relativity, Oxford Graduate Texts in Mathematics, 16, Oxford University Press, Oxford, 2008. 
[32]

M. Taylor, The global nonlinear stability of Minkowski space for the massless Einstein-Vlasov system, Ann. PDE, 3 (2017), 177pp. doi: 10.1007/s40818-017-0026-8.

[33] R. M. Wald, General Relativity, University of Chicago Press, Chicago, IL, 1984.  doi: 10.7208/chicago/9780226870373.001.0001.
[34]

J. York, Kinematics and dynamics of general relativity, in Sources of Gravitational Radiation, Cambridge University Press, 1979, 83-126.

[1]

Gerhard Rein, Christopher Straub. On the transport operators arising from linearizing the Vlasov-Poisson or Einstein-Vlasov system about isotropic steady states. Kinetic and Related Models, 2020, 13 (5) : 933-949. doi: 10.3934/krm.2020032

[2]

Irena Lasiecka, Mathias Wilke. Maximal regularity and global existence of solutions to a quasilinear thermoelastic plate system. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5189-5202. doi: 10.3934/dcds.2013.33.5189

[3]

Hyung Ju Hwang, Jaewoo Jung, Juan J. L. Velázquez. On global existence of classical solutions for the Vlasov-Poisson system in convex bounded domains. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 723-737. doi: 10.3934/dcds.2013.33.723

[4]

Simone Calogero, Stephen Pankavich. On the spatially homogeneous and isotropic Einstein-Vlasov-Fokker-Planck system with cosmological scalar field. Kinetic and Related Models, 2018, 11 (5) : 1063-1083. doi: 10.3934/krm.2018041

[5]

Katherine Zhiyuan Zhang. Focusing solutions of the Vlasov-Poisson system. Kinetic and Related Models, 2019, 12 (6) : 1313-1327. doi: 10.3934/krm.2019051

[6]

Robert Jensen, Andrzej Świech. Uniqueness and existence of maximal and minimal solutions of fully nonlinear elliptic PDE. Communications on Pure and Applied Analysis, 2005, 4 (1) : 199-207. doi: 10.3934/cpaa.2005.4.187

[7]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic and Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129

[8]

Marta Lewicka, Piotr B. Mucha. A local existence result for a system of viscoelasticity with physical viscosity. Evolution Equations and Control Theory, 2013, 2 (2) : 337-353. doi: 10.3934/eect.2013.2.337

[9]

Gianluca Crippa, Silvia Ligabue, Chiara Saffirio. Lagrangian solutions to the Vlasov-Poisson system with a point charge. Kinetic and Related Models, 2018, 11 (6) : 1277-1299. doi: 10.3934/krm.2018050

[10]

Yemin Chen. Smoothness of classical solutions to the Vlasov-Poisson-Landau system. Kinetic and Related Models, 2008, 1 (3) : 369-386. doi: 10.3934/krm.2008.1.369

[11]

Xiuting Li. The energy conservation for weak solutions to the relativistic Nordström-Vlasov system. Evolution Equations and Control Theory, 2016, 5 (1) : 135-145. doi: 10.3934/eect.2016.5.135

[12]

Yemin Chen. Smoothness of classical solutions to the Vlasov-Maxwell-Landau system near Maxwellians. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 889-910. doi: 10.3934/dcds.2008.20.889

[13]

Meixia Xiao, Xianwen Zhang. On global solutions to the Vlasov-Poisson system with radiation damping. Kinetic and Related Models, 2018, 11 (5) : 1183-1209. doi: 10.3934/krm.2018046

[14]

Lan Luo, Hongjun Yu. Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system. Kinetic and Related Models, 2016, 9 (2) : 393-405. doi: 10.3934/krm.2016.9.393

[15]

Kosuke Ono, Walter A. Strauss. Regular solutions of the Vlasov-Poisson-Fokker-Planck system. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 751-772. doi: 10.3934/dcds.2000.6.751

[16]

Dayton Preissl, Christophe Cheverry, Slim Ibrahim. Uniform lifetime for classical solutions to the Hot, Magnetized, Relativistic Vlasov Maxwell system. Kinetic and Related Models, 2021, 14 (6) : 1035-1079. doi: 10.3934/krm.2021042

[17]

Christian Pötzsche. Nonautonomous continuation of bounded solutions. Communications on Pure and Applied Analysis, 2011, 10 (3) : 937-961. doi: 10.3934/cpaa.2011.10.937

[18]

Benjamin Letson, Jonathan E. Rubin. Local orthogonal rectification: Deriving natural coordinates to study flows relative to manifolds. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3725-3747. doi: 10.3934/dcdsb.2020088

[19]

Qiaoyi Hu, Zhijun Qiao. Persistence properties and unique continuation for a dispersionless two-component Camassa-Holm system with peakon and weak kink solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2613-2625. doi: 10.3934/dcds.2016.36.2613

[20]

Yuhua Zhu. A local sensitivity and regularity analysis for the Vlasov-Poisson-Fokker-Planck system with multi-dimensional uncertainty and the spectral convergence of the stochastic Galerkin method. Networks and Heterogeneous Media, 2019, 14 (4) : 677-707. doi: 10.3934/nhm.2019027

2020 Impact Factor: 1.432

Article outline

[Back to Top]