• Previous Article
    A lower bound for the spectral gap of the conjugate Kac process with 3 interacting particles
  • KRM Home
  • This Issue
  • Next Article
    Global existence of small displacement solutions for Hookean incompressible viscoelasticity in 3D
doi: 10.3934/krm.2021041
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Diffusion limit and the optimal convergence rate of the Vlasov-Poisson-Fokker-Planck system

College of Mathematics and Information Sciences, Guangxi University, China

*Corresponding author: Mingying Zhong

Received  March 2021 Revised  August 2021 Early access December 2021

Fund Project: The research of the author was supported by the National Science Fund for Excellent Young Scholars No. 11922107, the National Natural Science Foundation of China grants No. 11671100, and Guangxi Natural Science Foundation Nos. 2018GXNSFAA138210 and 2019JJG110010

In the present paper, we study the diffusion limit of the classical solution to the Vlasov-Poisson-Fokker-Planck (VPFP) system with initial data near a global Maxwellian. We prove the convergence and establish the optimal convergence rate of the global strong solution to the VPFP system towards the solution to the drift-diffusion-Poisson system based on the spectral analysis with precise estimation on the initial layer.

Citation: Mingying Zhong. Diffusion limit and the optimal convergence rate of the Vlasov-Poisson-Fokker-Planck system. Kinetic & Related Models, doi: 10.3934/krm.2021041
References:
[1]

A. ArnoldP. Markowich and G. Toscani, On large time asymptotics for drift-diffusion-Poisson systems, Transp. Theory Statist. Phys., 29 (2000), 571-581.  doi: 10.1080/00411450008205893.  Google Scholar

[2]

C. Bardos and S. Ukai, The classical incompressible Navier-Stokes limit of the Boltzmann equation, Math. Models Methods Appl. Sci., 1 (1991), 235-257.  doi: 10.1142/S0218202591000137.  Google Scholar

[3]

P. Biler, Existence and asymptotics of solutions for a parabolic-elliptic system with nonlinear no-flux boundary conditions, Nonlinear Anal., 19 (1992), 1121-1136.  doi: 10.1016/0362-546X(92)90186-I.  Google Scholar

[4]

P. Biler and J. Dolbeault, Long time behavior of solutions of Nernst-Planck and Debye-Hückel drift-diffusion systems, Ann. Henri Poincaré, 1 (2000), 461-472.  doi: 10.1007/S000230050003.  Google Scholar

[5]

P. BilerW. Hebisch and T. Nadzieja, The Debye system: Existence and large time behavior of solutions, Nonlinear Anal., 23 (1994), 1189-1209.  doi: 10.1016/0362-546X(94)90101-5.  Google Scholar

[6]

L. L. BonillaJ. A. Carrillo and J. Soler, Asymptotic behavior of an initial-boundary value problem for the Vlasov-Poisson-Fokker-Planck system, SIAM J. Appl. Math., 57 (1997), 1343-1372.  doi: 10.1137/S0036139995291544.  Google Scholar

[7]

F. Bouchut, Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions, J. Funct. Anal., 111 (1993), 239-258.  doi: 10.1006/jfan.1993.1011.  Google Scholar

[8]

F. Bouchut, Smoothing effect for the non-linear Vlasov-Poisson-Fokker-Planck system, J. Differential Equations, 122 (1995), 225-238.  doi: 10.1006/jdeq.1995.1146.  Google Scholar

[9]

F. Bouchut and J. Dolbeault, On long asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials, Differential Integral Equations, 8 (1995), 487-514.   Google Scholar

[10]

J. A. Carrillo, Global weak solutions for the initial-boundary-value problems to the Vlasov-Poisson-Fokker-Planck system, Math. Methods Appl. Sci., 21 (1998), 907-938.  doi: 10.1002/(SICI)1099-1476(19980710)21:10<907::AID-MMA977>3.0.CO;2-W.  Google Scholar

[11]

J. A. Carrillo and J. Soler, On the initial value problem for the Vlasov-Poisson-Fokker-Planck system with initial data in $L^p$ spaces, Math. Methods Appl. Sci., 18 (1995), 825-839.  doi: 10.1002/mma.1670181006.  Google Scholar

[12]

J. A. CarrilloJ. Soler and J. L. Vazquez, Asymptotic behaviour and self-similarity for the three-dimensional Vlasov-Poisson-Fokker-Planck system, J. Funct. Anal., 141 (1996), 99-132.  doi: 10.1006/jfan.1996.0123.  Google Scholar

[13]

N. El Ghani and N. Masmoudi, Diffusion limit of the Vlasov-Poisson-Fokker-Planck system, Commun. Math. Sci., 8 (2010), 463-479.  doi: 10.4310/CMS.2010.v8.n2.a9.  Google Scholar

[14]

R. S. Ellis and M. A. Pinsky, The first and second fluid approximations to the linearized Boltzmann equation, J. Math. Pures Appl. (9), 54 (1975), 125-156.   Google Scholar

[15]

W. Fang and K. Ito, On the time-dependent drift-diffusion model for semiconductors, J. Differential Equations, 117 (1995), 245-280.  doi: 10.1006/jdeq.1995.1054.  Google Scholar

[16]

T. Goudon, Hydrodynamic limit for the Vlasov-Poisson-Fokker-Planck system: Analysis of the two-dimensional case, Math. Models Methods Appl. Sci., 15 (2005), 737-752.  doi: 10.1142/S021820250500056X.  Google Scholar

[17]

T. GoudonJ. NietoF. Poupaud and J. Soler, Multidimensional high-field limit of the electrostatic Vlasov-Poisson-Fokker-Planck system, J. Differential Equations, 213 (2005), 418-442.  doi: 10.1016/j.jde.2004.09.008.  Google Scholar

[18]

H. J. Hwang and J. Jang, On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 681-691.  doi: 10.3934/dcdsb.2013.18.681.  Google Scholar

[19]

A. Jüngel, Quasi-Hydrodynamic Semiconductor Equations, Progress in Nonlinear Differential Equations and their Applications, 41, Birkhäuser Verlag, Basel, 2001. doi: 10.1007/978-3-0348-8334-4.  Google Scholar

[20]

A. Krzywicki and T. A. Nadzieja, A nonstationary problem in the theory of electrolytes, Quart. Appl. Math., 50 (1992), 105-107.  doi: 10.1090/qam/1146626.  Google Scholar

[21]

H.-L. LiT. YangJ. Sun and M. Zhong, Large time behavior of solutions to Vlasov-Poisson-Landau (Fokker-Planck) equations, Sci. Sin. Math., 46 (2016), 981-1004.  doi: 10.1360/N012015-00230.  Google Scholar

[22]

H.-L. LiT. Yang and M. Zhong, Diffusion limit of the Vlasov-Poisson-Boltzmann system, Kinet. Relat. Models, 14 (2021), 211-255.  doi: 10.3934/krm.2021003.  Google Scholar

[23]

H.-L. LiT. Yang and M. Zhong, Spectrum analysis for the Vlasov-Poisson-Boltzmann system, Arch. Ration. Mech. Anal., 241 (2021), 311-355.  doi: 10.1007/s00205-021-01652-5.  Google Scholar

[24]

L. Luo and H. Yu, Spectrum analysis of the linear Fokker-Planck equation, Anal. Appl. (Singap.), 15 (2017), 313-331.  doi: 10.1142/S0219530515500219.  Google Scholar

[25]

P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer-Verlag, Vienna, 1990. doi: 10.1007/978-3-7091-6961-2.  Google Scholar

[26]

J. Maxwell, On stresses in rarefied gases arising from inequalities of temperature, Phil. Trans. Roy. Soc. Lond., 170 (1879), 231-256.   Google Scholar

[27]

J. NietoF. Poupaud and J. Soler, High-field limit for the Vlasov-Poisson-Fokker-Planck system, Arch. Ration. Mech. Anal., 158 (2001), 29-59.  doi: 10.1007/s002050100139.  Google Scholar

[28]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[29]

F. Poupaud and J. Soler, Parabolic limit and stability of the Vlasov-Fokker-Planck system, Math. Models Methods Appl. Sci., 10 (2000), 1027-1045.  doi: 10.1142/S0218202500000525.  Google Scholar

[30]

G. Rein and J. Weckler, Generic global classical solutions of the Vlasov-Fokker-Planck-Poisson system in three dimensions, J. Differential Equations, 99 (1992), 59-77.  doi: 10.1016/0022-0396(92)90135-A.  Google Scholar

[31]

S. Ukai and T. Yang, Mathematical Theory of Boltzmann Equation, Lecture Notes Series - No. 8, Liu Bie Ju Center for Mathematical Sciences, City University of Hong Kong, 2006. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.639.110&rep=rep1&type=pdf. Google Scholar

[32]

H. D. Victory Jr., On the existence of global weak solutions for Vlasov-Poisson-Fokker-Planck systems, J. Math. Anal. Appl., 160 (1991), 525-555.  doi: 10.1016/0022-247X(91)90324-S.  Google Scholar

[33]

H. D. Victory Jr. and B. P. O'Dwyer, On classical solutions of Vlasov-Poisson Fokker-Planck systems, Indiana Univ. Math. J., 39 (1990), 105-156.  doi: 10.1512/iumj.1990.39.39009.  Google Scholar

[34]

H. WuT.-C. Lin and C. Liu, Diffusion limit of kinetic equations for multiple species charged particles, Arch. Ration. Mech. Anal., 215 (2015), 419-441.  doi: 10.1007/s00205-014-0784-3.  Google Scholar

show all references

References:
[1]

A. ArnoldP. Markowich and G. Toscani, On large time asymptotics for drift-diffusion-Poisson systems, Transp. Theory Statist. Phys., 29 (2000), 571-581.  doi: 10.1080/00411450008205893.  Google Scholar

[2]

C. Bardos and S. Ukai, The classical incompressible Navier-Stokes limit of the Boltzmann equation, Math. Models Methods Appl. Sci., 1 (1991), 235-257.  doi: 10.1142/S0218202591000137.  Google Scholar

[3]

P. Biler, Existence and asymptotics of solutions for a parabolic-elliptic system with nonlinear no-flux boundary conditions, Nonlinear Anal., 19 (1992), 1121-1136.  doi: 10.1016/0362-546X(92)90186-I.  Google Scholar

[4]

P. Biler and J. Dolbeault, Long time behavior of solutions of Nernst-Planck and Debye-Hückel drift-diffusion systems, Ann. Henri Poincaré, 1 (2000), 461-472.  doi: 10.1007/S000230050003.  Google Scholar

[5]

P. BilerW. Hebisch and T. Nadzieja, The Debye system: Existence and large time behavior of solutions, Nonlinear Anal., 23 (1994), 1189-1209.  doi: 10.1016/0362-546X(94)90101-5.  Google Scholar

[6]

L. L. BonillaJ. A. Carrillo and J. Soler, Asymptotic behavior of an initial-boundary value problem for the Vlasov-Poisson-Fokker-Planck system, SIAM J. Appl. Math., 57 (1997), 1343-1372.  doi: 10.1137/S0036139995291544.  Google Scholar

[7]

F. Bouchut, Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions, J. Funct. Anal., 111 (1993), 239-258.  doi: 10.1006/jfan.1993.1011.  Google Scholar

[8]

F. Bouchut, Smoothing effect for the non-linear Vlasov-Poisson-Fokker-Planck system, J. Differential Equations, 122 (1995), 225-238.  doi: 10.1006/jdeq.1995.1146.  Google Scholar

[9]

F. Bouchut and J. Dolbeault, On long asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials, Differential Integral Equations, 8 (1995), 487-514.   Google Scholar

[10]

J. A. Carrillo, Global weak solutions for the initial-boundary-value problems to the Vlasov-Poisson-Fokker-Planck system, Math. Methods Appl. Sci., 21 (1998), 907-938.  doi: 10.1002/(SICI)1099-1476(19980710)21:10<907::AID-MMA977>3.0.CO;2-W.  Google Scholar

[11]

J. A. Carrillo and J. Soler, On the initial value problem for the Vlasov-Poisson-Fokker-Planck system with initial data in $L^p$ spaces, Math. Methods Appl. Sci., 18 (1995), 825-839.  doi: 10.1002/mma.1670181006.  Google Scholar

[12]

J. A. CarrilloJ. Soler and J. L. Vazquez, Asymptotic behaviour and self-similarity for the three-dimensional Vlasov-Poisson-Fokker-Planck system, J. Funct. Anal., 141 (1996), 99-132.  doi: 10.1006/jfan.1996.0123.  Google Scholar

[13]

N. El Ghani and N. Masmoudi, Diffusion limit of the Vlasov-Poisson-Fokker-Planck system, Commun. Math. Sci., 8 (2010), 463-479.  doi: 10.4310/CMS.2010.v8.n2.a9.  Google Scholar

[14]

R. S. Ellis and M. A. Pinsky, The first and second fluid approximations to the linearized Boltzmann equation, J. Math. Pures Appl. (9), 54 (1975), 125-156.   Google Scholar

[15]

W. Fang and K. Ito, On the time-dependent drift-diffusion model for semiconductors, J. Differential Equations, 117 (1995), 245-280.  doi: 10.1006/jdeq.1995.1054.  Google Scholar

[16]

T. Goudon, Hydrodynamic limit for the Vlasov-Poisson-Fokker-Planck system: Analysis of the two-dimensional case, Math. Models Methods Appl. Sci., 15 (2005), 737-752.  doi: 10.1142/S021820250500056X.  Google Scholar

[17]

T. GoudonJ. NietoF. Poupaud and J. Soler, Multidimensional high-field limit of the electrostatic Vlasov-Poisson-Fokker-Planck system, J. Differential Equations, 213 (2005), 418-442.  doi: 10.1016/j.jde.2004.09.008.  Google Scholar

[18]

H. J. Hwang and J. Jang, On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 681-691.  doi: 10.3934/dcdsb.2013.18.681.  Google Scholar

[19]

A. Jüngel, Quasi-Hydrodynamic Semiconductor Equations, Progress in Nonlinear Differential Equations and their Applications, 41, Birkhäuser Verlag, Basel, 2001. doi: 10.1007/978-3-0348-8334-4.  Google Scholar

[20]

A. Krzywicki and T. A. Nadzieja, A nonstationary problem in the theory of electrolytes, Quart. Appl. Math., 50 (1992), 105-107.  doi: 10.1090/qam/1146626.  Google Scholar

[21]

H.-L. LiT. YangJ. Sun and M. Zhong, Large time behavior of solutions to Vlasov-Poisson-Landau (Fokker-Planck) equations, Sci. Sin. Math., 46 (2016), 981-1004.  doi: 10.1360/N012015-00230.  Google Scholar

[22]

H.-L. LiT. Yang and M. Zhong, Diffusion limit of the Vlasov-Poisson-Boltzmann system, Kinet. Relat. Models, 14 (2021), 211-255.  doi: 10.3934/krm.2021003.  Google Scholar

[23]

H.-L. LiT. Yang and M. Zhong, Spectrum analysis for the Vlasov-Poisson-Boltzmann system, Arch. Ration. Mech. Anal., 241 (2021), 311-355.  doi: 10.1007/s00205-021-01652-5.  Google Scholar

[24]

L. Luo and H. Yu, Spectrum analysis of the linear Fokker-Planck equation, Anal. Appl. (Singap.), 15 (2017), 313-331.  doi: 10.1142/S0219530515500219.  Google Scholar

[25]

P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer-Verlag, Vienna, 1990. doi: 10.1007/978-3-7091-6961-2.  Google Scholar

[26]

J. Maxwell, On stresses in rarefied gases arising from inequalities of temperature, Phil. Trans. Roy. Soc. Lond., 170 (1879), 231-256.   Google Scholar

[27]

J. NietoF. Poupaud and J. Soler, High-field limit for the Vlasov-Poisson-Fokker-Planck system, Arch. Ration. Mech. Anal., 158 (2001), 29-59.  doi: 10.1007/s002050100139.  Google Scholar

[28]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[29]

F. Poupaud and J. Soler, Parabolic limit and stability of the Vlasov-Fokker-Planck system, Math. Models Methods Appl. Sci., 10 (2000), 1027-1045.  doi: 10.1142/S0218202500000525.  Google Scholar

[30]

G. Rein and J. Weckler, Generic global classical solutions of the Vlasov-Fokker-Planck-Poisson system in three dimensions, J. Differential Equations, 99 (1992), 59-77.  doi: 10.1016/0022-0396(92)90135-A.  Google Scholar

[31]

S. Ukai and T. Yang, Mathematical Theory of Boltzmann Equation, Lecture Notes Series - No. 8, Liu Bie Ju Center for Mathematical Sciences, City University of Hong Kong, 2006. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.639.110&rep=rep1&type=pdf. Google Scholar

[32]

H. D. Victory Jr., On the existence of global weak solutions for Vlasov-Poisson-Fokker-Planck systems, J. Math. Anal. Appl., 160 (1991), 525-555.  doi: 10.1016/0022-247X(91)90324-S.  Google Scholar

[33]

H. D. Victory Jr. and B. P. O'Dwyer, On classical solutions of Vlasov-Poisson Fokker-Planck systems, Indiana Univ. Math. J., 39 (1990), 105-156.  doi: 10.1512/iumj.1990.39.39009.  Google Scholar

[34]

H. WuT.-C. Lin and C. Liu, Diffusion limit of kinetic equations for multiple species charged particles, Arch. Ration. Mech. Anal., 215 (2015), 419-441.  doi: 10.1007/s00205-014-0784-3.  Google Scholar

[1]

Yuhua Zhu. A local sensitivity and regularity analysis for the Vlasov-Poisson-Fokker-Planck system with multi-dimensional uncertainty and the spectral convergence of the stochastic Galerkin method. Networks & Heterogeneous Media, 2019, 14 (4) : 677-707. doi: 10.3934/nhm.2019027

[2]

Ling Hsiao, Fucai Li, Shu Wang. Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system. Communications on Pure & Applied Analysis, 2008, 7 (3) : 579-589. doi: 10.3934/cpaa.2008.7.579

[3]

Lan Luo, Hongjun Yu. Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system. Kinetic & Related Models, 2016, 9 (2) : 393-405. doi: 10.3934/krm.2016.9.393

[4]

Kosuke Ono, Walter A. Strauss. Regular solutions of the Vlasov-Poisson-Fokker-Planck system. Discrete & Continuous Dynamical Systems, 2000, 6 (4) : 751-772. doi: 10.3934/dcds.2000.6.751

[5]

Maxime Hauray, Samir Salem. Propagation of chaos for the Vlasov-Poisson-Fokker-Planck system in 1D. Kinetic & Related Models, 2019, 12 (2) : 269-302. doi: 10.3934/krm.2019012

[6]

Hyung Ju Hwang, Juhi Jang. On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 681-691. doi: 10.3934/dcdsb.2013.18.681

[7]

José A. Carrillo, Young-Pil Choi, Yingping Peng. Large friction-high force fields limit for the nonlinear Vlasov–Poisson–Fokker–Planck system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021052

[8]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, 2021, 14 (2) : 211-255. doi: 10.3934/krm.2021003

[9]

Jonathan Zinsl. Exponential convergence to equilibrium in a Poisson-Nernst-Planck-type system with nonlinear diffusion. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2915-2930. doi: 10.3934/dcds.2016.36.2915

[10]

José A. Carrillo, Renjun Duan, Ayman Moussa. Global classical solutions close to equilibrium to the Vlasov-Fokker-Planck-Euler system. Kinetic & Related Models, 2011, 4 (1) : 227-258. doi: 10.3934/krm.2011.4.227

[11]

Simone Calogero, Stephen Pankavich. On the spatially homogeneous and isotropic Einstein-Vlasov-Fokker-Planck system with cosmological scalar field. Kinetic & Related Models, 2018, 11 (5) : 1063-1083. doi: 10.3934/krm.2018041

[12]

Stephen Pankavich, Nicholas Michalowski. Global classical solutions for the "One and one-half'' dimensional relativistic Vlasov-Maxwell-Fokker-Planck system. Kinetic & Related Models, 2015, 8 (1) : 169-199. doi: 10.3934/krm.2015.8.169

[13]

Mihai Bostan, Thierry Goudon. Low field regime for the relativistic Vlasov-Maxwell-Fokker-Planck system; the one and one half dimensional case. Kinetic & Related Models, 2008, 1 (1) : 139-170. doi: 10.3934/krm.2008.1.139

[14]

Patrick Cattiaux, Elissar Nasreddine, Marjolaine Puel. Diffusion limit for kinetic Fokker-Planck equation with heavy tails equilibria: The critical case. Kinetic & Related Models, 2019, 12 (4) : 727-748. doi: 10.3934/krm.2019028

[15]

Hai-Liang Li, Hongjun Yu, Mingying Zhong. Spectrum structure and optimal decay rate of the relativistic Vlasov-Poisson-Landau system. Kinetic & Related Models, 2017, 10 (4) : 1089-1125. doi: 10.3934/krm.2017043

[16]

Zhendong Fang, Hao Wang. Convergence from two-species Vlasov-Poisson-Boltzmann system to two-fluid incompressible Navier-Stokes-Fourier-Poisson system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021231

[17]

M. Pellicer, J. Solà-Morales. Spectral analysis and limit behaviours in a spring-mass system. Communications on Pure & Applied Analysis, 2008, 7 (3) : 563-577. doi: 10.3934/cpaa.2008.7.563

[18]

Roberta Bosi. Classical limit for linear and nonlinear quantum Fokker-Planck systems. Communications on Pure & Applied Analysis, 2009, 8 (3) : 845-870. doi: 10.3934/cpaa.2009.8.845

[19]

Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks & Heterogeneous Media, 2017, 12 (4) : 683-705. doi: 10.3934/nhm.2017028

[20]

Francis Filbet, Roland Duclous, Bruno Dubroca. Analysis of a high order finite volume scheme for the 1D Vlasov-Poisson system. Discrete & Continuous Dynamical Systems - S, 2012, 5 (2) : 283-305. doi: 10.3934/dcdss.2012.5.283

2020 Impact Factor: 1.432

Article outline

[Back to Top]